![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > General theory of computing
As interactive hypermedia systems take an increasingly prevalent role in the workplace, at home and on the web, their usability becomes vitally important to meeting the expectations of users and fulfilling the promise integrating technology into daily life. Quality and Communicability for Interactive Hypermedia Systems: Concepts and Practices for Design explores ways to overcome obstacles to successful communication from theories of communicability to the various levels of design and integration. With a heuristic focus on how current system design affects user understanding, this reference source goes beyond simple usability and fills an important gap in present research by illustrating the importance of communicability in modern technological advancements.
As recently as 1968, computer scientists were uncertain how best to interconnect even two computers. The notion that within a few decades the challenge would be how to interconnect millions of computers around the globe was too far-fetched to contemplate. Yet, by 1988, that is precisely what was happening. The products and devices developed in the intervening years-such as modems, multiplexers, local area networks, and routers-became the linchpins of the global digital society. How did such revolutionary innovation occur? This book tells the story of the entrepreneurs who were able to harness and join two factors: the energy of computer science researchers supported by governments and universities, and the tremendous commercial demand for Internetworking computers. The centerpiece of this history comes from unpublished interviews from the late 1980s with over 80 computing industry pioneers, including Paul Baran, J.C.R. Licklider, Vint Cerf, Robert Kahn, Larry Roberts, and Robert Metcalfe. These individuals give us unique insights into the creation of multi-billion dollar markets for computer-communications equipment, and they reveal how entrepreneurs struggled with failure, uncertainty, and the limits of knowledge.
This volume is proceedings of the international conference of the Parallel Computational Fluid Dynamics 2002. In the volume, up-to-date information about numerical simulations of flows using parallel computers is given by leading researchers in this field. Special topics are "Grid Computing" and "Earth Simulator." Grid computing is now the most exciting topic in computer science. An invited paper on grid computing is presented in the volume. The Earth-Simulator is now the fastest computer in the world. Papers on flow-simulations using the Earth-Simulator are also included, as well as a thirty-two page special tutorial article on numerical optimization.
It has been over twenty years since developments in actor-network theory were first written on paper. Since then, the Information and Communication Technologies (ICT) community has begun to discover the power of using actor-network theory as an explanatory framework for much of its research. This research community has come to an understanding that information systems are, of necessity, socio-technical in nature and require a socio-technical approach to their investigation. Thanks to developments in actor-network theory, researchers can now approach people and technology as one single entity that gives support to social influences on technological innovations. Social Influences on Information and Communication Technology Innovations discusses in great detail the use of actor-network theory in offering explanations for socio-technical phenomena, focusing greatly on information communication technologies. Implementation and use of information and communication technologies inevitably involves the interactions of both technology and people. This publication facilitates international growth in the body of research investigating the value of using actor-network theory as a means of understanding socio-technical phenomena and technological innovation.
This textbook provides concise coverage of the basics of linear and integer programming which, with megatrends toward optimization, machine learning, big data, etc., are becoming fundamental toolkits for data and information science and technology. The authors' approach is accessible to students from almost all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification and computer vision. The presentations enables the basis for numerous approaches to solving hard combinatorial optimization problems through randomization and approximation. Readers will learn to cast various problems that may arise in their research as optimization problems, understand the cases where the optimization problem will be linear, choose appropriate solution methods and interpret results appropriately.
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intelligence and working on these topics.
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.
An essential contribution to the study of the history of computers, this work identifies the computer's impact on the physical, biological, cognitive, and medical sciences. References fundamental to the understudied area of the history of scientific computing also document the significant role of the sciences in helping to shape the development of computer technology. More broadly, the many resources on scientific computing help demonstrate how the computer was the most significant scientific instrument of the 20th century. The only guide of its kind covering the use and impact of computers on the the physical, biological, medical, and cognitive sciences, it contains more than 1,000 annotated citations to carefully selected secondary and primary resources. Historians of technology and science will find this a very useful resource. Computer scientists, physicians, biologists, chemists, and geologists will also benefit from this extensive bibliography on the history of computer applications and the sciences.
The book is designed to help children learn and understand the concepts of a computer. It gives them step by step instructions and leads them through the process on how to do something. The book also provides screenshots so the child can also use visual associations with the words that he/she is reading. They also have some exercises in the book that they can do to help them remember what was taught to them. Children learn at an early age and soak up the knowledge. It is best to give them as much information, and to display that information, in as many ways as possible. By the time your child reads this book, they will have a very good basic, but yet strong foundation of the Microsoft Windows operating system. The book is meant for anyone, not only children, to be able to pick it up, read it, and understand it from a non-technical standpoint. Please look towards the back of the book to contact the author for any pre-sales questions or comments.
This textbook for a one-semester course in Digital Systems Design describes the basic methods used to develop "traditional" Digital Systems, based on the use of logic gates and flip flops, as well as more advanced techniques that enable the design of very large circuits, based on Hardware Description Languages and Synthesis tools. It was originally designed to accompany a MOOC (Massive Open Online Course) created at the Autonomous University of Barcelona (UAB), currently available on the Coursera platform. Readers will learn what a digital system is and how it can be developed, preparing them for steps toward other technical disciplines, such as Computer Architecture, Robotics, Bionics, Avionics and others. In particular, students will learn to design digital systems of medium complexity, describe digital systems using high level hardware description languages, and understand the operation of computers at their most basic level. All concepts introduced are reinforced by plentiful illustrations, examples, exercises, and applications. For example, as an applied example of the design techniques presented, the authors demonstrate the synthesis of a simple processor, leaving the student in a position to enter the world of Computer Architecture and Embedded Systems.
Offers an understanding of the applications and supporting technologies associated with digital video communications. The text also shows how to provide reliable, flexible and robust video transmission over networks. It begins with a discussion of the new and emerging applications of digital video communications including tele-medicine, videoconferencing and distance learning, and introduces the key systems required to support digital video: the Internet, ATM networks and Broadband ISDN. It also explores near future developments to the Internet that will support real-time video traffic.
This book explains the development of theoretical computer science in its early stages, specifically from 1965 to 1990. The author is among the pioneers of theoretical computer science, and he guides the reader through the early stages of development of this new discipline. He explains the origins of the field, arising from disciplines such as logic, mathematics, and electronics, and he describes the evolution of the key principles of computing in strands such as computability, algorithms, and programming. But mainly it's a story about people - pioneers with diverse backgrounds and characters came together to overcome philosophical and institutional challenges and build a community. They collaborated on research efforts, they established schools and conferences, they developed the first related university courses, they taught generations of future researchers and practitioners, and they set up the key publications to communicate and archive their knowledge. The book is a fascinating insight into the field as it existed and evolved, it will be valuable reading for anyone interested in the history of computing.
Computational Frameworks: Systems, Models and Applications provides an overview of advanced perspectives that bridges the gap between frontline research and practical efforts. It is unique in showing the interdisciplinary nature of this area and the way in which it interacts with emerging technologies and techniques. As computational systems are a dominating part of daily lives and a required support for most of the engineering sciences, this book explores their usage (e.g. big data, high performance clusters, databases and information systems, integrated and embedded hardware/software components, smart devices, mobile and pervasive networks, cyber physical systems, etc.).
This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.
This book covers basic fundamentals of logic design and advanced RTL design concepts using VHDL. The book is organized to describe both simple and complex RTL design scenarios using VHDL. It gives practical information on the issues in ASIC prototyping using FPGAs, design challenges and how to overcome practical issues and concerns. It describes how to write an efficient RTL code using VHDL and how to improve the design performance. The design guidelines by using VHDL are also explained with the practical examples in this book. The book also covers the ALTERA and XILINX FPGA architecture and the design flow for the PLDs. The contents of this book will be useful to students, researchers, and professionals working in hardware design and optimization. The book can also be used as a text for graduate and professional development courses.
The past few years have seen significant change in the landscape of
high-end network processing. In response to the formidable
challenges facing this emerging field, the editors of this series
set out to survey the latest research and practices in the design,
programming, and use of network processors.
This book aims at presenting the field of Quantum Information Theory in an intuitive, didactic and self-contained way, taking into account several multidisciplinary aspects. Therefore, this books is particularly suited to students and researchers willing to grasp fundamental concepts in Quantum Computation and Quantum Information areas. The field of Quantum Information Theory has increased significantly over the last three decades. Many results from classical information theory were translated and extended to a scenario where quantum effects become important. Most of the results in this area allows for an asymptotically small probability of error to represent and transmit information efficiently. Claude E.Shannon was the first scientist to realize that error-free classical information transmission can be accomplished under certain conditions. More recently, the concept of error-free classical communication was translated to the quantum context. The so-called Quantum Zero-Error Information Theory completes and extends the Shannon Zero-Error Information Theory.
Offers support for a wide range of products for the RISC
System/6000 An important reference for all programmers and product
development
Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas. There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of applied work, and these contributions have been externally refereed to the high quality standards of leading journals in the field.
In many international settings, regional economies are declining resulting in lowered opportunities for these communities. This result attacks the very fabric of cohesion and purpose for these regional societies, and increases social, health, economic and sustainability problems. Community Informatics research, education and practice is an emerging area in many countries, which seeks to address these issues. Encyclopedia of Developing Regional Communities with Information and Communication Technology provides leaders, policy developers, researchers, students and community workers with successful strategies and principles of Community Informatics to transform regions. This encyclopedia develops an integrative cross-sectoral approach in the use of Community Informatics to increase both social and cultural capital as a means to increased sustainability for regional communities.
|
You may like...
Untitled - Securing Land Tenure In Urban…
Donna Hornby, Rosalie Kingwill, …
Paperback
(3)
|