![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > General
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a rigorous formulation of the thermodynamic functions of clouds (exclusive of any consideration of microphysical effets) and a better understanding of the approx imations usually implicit in practical applications."
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
1. Provides the fundamentals of subpixel mapping technology and its applications. 2. Discusses in detail the advantages of using different subpixel mapping techniques based on remote sensing data. 3. Summarizes in a systematic way current subpixel location methods. 4. Highlights authors' achievements in subpixel mapping technology. 5. Includes case studies based on remote sensing data from USA, Italy, China, and Cambodia.
Systems and their mathematical description play an important role in all branches of science. This book offers an introduction to mathematical modeling techniques. It is intended for undergrad students in applied natural science, in particular earth and environmental science, environmental engineering, as well as ecology, environmental chemistry, chemical engineering, agronomy, and forestry. The focus is on developing the basic methods of modeling. Students will learn how to build mathematical models of their own, but also how to analyze the properties of existing models. The book neither derives mathematical formulae, nor does it describe modeling software, instead focusing on the fundamental concepts behind mathematical models. A formulary in the appendix summarizes the necessary mathematical knowledge. To support independent learners, numerous examples and problems from various scientific disciplines are provided throughout the book. Thanks in no small part to the cartoons by Nikolas Sturchler, this introduction to the colorful world of modeling is both entertaining and rich in content
'A delightful and engaging treasure trove of a book that brings the chemical elements to life and gives them personalities of their own. A wonderful read for young and old alike to get you inspired by chemistry.' Jim Al-Khalili 'The perfect book to escape our human-sized existence and take a tour of the atomic world instead.' Helen Arney, science comedian and broadcaster When we think of the periodic table we picture orderly rows of elements that conform to type and never break the rules. In this book Kathryn Harkup reveals that there are personalities, passions, quirks and historical oddities behind those ordered rows, and shows us that the periodic table is a sprawling family tree with its own black sheep, wayward cousins and odd uncles. The elements in the periodic table, like us, are an extended family - some old, some newborn, some shy and reticent, some exuberant or unreliable. Dr Harkup tells the weird and wonderful stories of just fifty two members of this family - remarkable tales of discovery, inspiration and revolution, from the everyday to the extraordinary. Some elements are relatively anonymous; others, already familiar, are seen in a new light; and old friends have surprising secrets to share. From our green-fingered friend magnesium to the devil incarnate polonium, this eclectic collection of engaging and informative stories will change the way you see the periodic table for ever.
During the last decades, continuum mechanics of porous materials has achieved great attention, since it allows for the consideration of the volumetrically coupled behaviour of the solid matrix deformation and the pore-fluid flow. Naturally, applications of porous media models range from civil and environmental engineering, where, e. g. , geote- nical problems like the consolidation problem are of great interest, via mechanical engineering, where, e. g. , the description of sinter materials or polymeric and metallic foams is a typical problem, to chemical and biomechanical engineering, where, e. g. , the complex structure of l- ing tissues is studied. Although these applications are principally very different, they basically fall into the category of multiphase materials, which can be described, on the macroscale, within the framework of the well-founded Theory of Porous Media (TPM). With the increasing power of computer hardware together with the rapidly decreasing computational costs, numerical solutions of complex coupled problems became possible and have been seriously investigated. However, since the quality of the numerical solutions strongly depends on the quality of the underlying physical model together with the experimental and mathematical possibilities to successfully determine realistic material parameters, a successful treatment of porous materials requires a joint consideration of continuum mechanics, experimental mechanics and numerical methods. In addition, micromechanical - vestigations and homogenization techniques are very helpful to increase the phenomenological understanding of such media.
Die Radioaktivitat von Boden, Wasser und Luft ist ein klassisches Forschungs- gebiet der Geophysik, aus dessen Ergebnissen diese von jeher reichen Nutzen zieht: Fragen nach der Warmebilanz des Erdinnern, nach dem Alter der Erde und dem der Gesteine haben erst von hier aus eine befriedigende Losung gefunden; H ydro- logie und Balneologie verdanken der Radioaktivitat entscheidende Bereicherung; im Rahmen der Prospektion und Bodenforschung hat sie ihren Platz; in der Physik der Atmosphare bietet sie die wesentliche Grundlage zum Verstandnis der atmospharisch-elektrischen Erscheinungen; dem Meteorologen gibt sie neue Moglichkeiten zur Bearbeitung atmospharischer Austausch- und Transport- probleme. Die Moglichkeit der Injektion gewaltiger Mengen radioaktiven Materials in die Atmosphare und das Auftreten kunstlich-radioaktiver Elemente im geo- physikalischen Bereich als Folge von Spaltprozessen oder Wirkungen der kos- mischen Strahlung haben dieser engen Verbindung zwischen Radioaktivitat und Geophysik neue Impulse verliehen. Die im letzten J ahrzehnt gewonnenen neuen Erkenntnisse und Fortschritte ubertreffen bei weitem die in den rund 50 Jahren "klassischer" Periode erworbenen Einsichten und haben dazu neue Probleme, Aufgaben und Moglichkeiten aufgezeigt.
The book is a new comprehensive textbook about creating and publishing geoinformation metadata. It is a compendium of knowledge about geoinformation metadata in INSPIRE Directive and Spatial Information Infrastructures. It contains the knowledge necessary to understand prior to the creation of geoinformation metadata. Metadata - "data about data" - describe the layers of spatial data (data series, services) responding to the questions: what?, why?, when?, who?, how? and where? Geoinformation metadata allows for exact search of the spatial data according to given criteria, regardless of where this data is located. On 15 May 2007 the EU Directive 2007/2/EC came into force establishing Infrastructure for Spatial Information in Europe - INSPIRE. The proper functioning of the infrastructure for spatial information would not be possible without the metadata.
The authors in this volume make a case for LTSER's potential in providing insights, knowledge and experience necessary for a sustainability transition. This expertly edited selection of contributions from Europe and North America reviews the development of LTSER since its inception and assesses its current state, which has evolved to recognize the value of formulating solutions to the host of ecological threats we face. Through many case studies, this book gives the reader a greater sense of where we are and what still needs to be done to engage in and make meaning from long-term, place-based and cross-disciplinary engagements with socio-ecological systems.
This research monograph deals with a modeling theory of the system of Navier-Stokes-Fourier equations for a Newtonian fluid governing a compressible viscous and heat conducting flows. The main objective is threefold. First , to 'deconstruct' this Navier-Stokes-Fourier system in order to unify the puzzle of the various partial simplified approximate models used in Newtonian Classical Fluid Dynamics and this, first facet, have obviously a challenging approach and a very important pedagogic impact on the university education. The second facet of the main objective is to outline a rational consistent asymptotic/mathematical theory of the of fluid flows modeling on the basis of a typical Navier-Stokes-Fourier initial and boundary value problem. The third facet is devoted to an illustration of our rational asymptotic/mathematical modeling theory for various technological and geophysical stiff problems from: aerodynamics, thermal and thermocapillary convections and also meteofluid dynamics.
Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.
This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.
In 1969 the North Atlantic Treaty Organization (NATO) cstablishcd thc Committee on Challenges of Modern Society (CCMS). The subject of air pollution was from the thc very beginning one of the priority problems umier deliberation within the tJ-amcwork of various pi- lot studies undertaken by this committee. The organization of a yearly conference dealing with air pollution modelling and its application has become one of the main activities within thc pilot study rclating to air pollution. Pleasc see the listing on the next page for completed NATO/CCMS Pilot Studies and the International Technical Meetings (ITM) on Air Pollution Modelling and Its Application. This volume contains the papers at the 22ND lTM, being held in Clermont-Ferrand, France during June 2 -6,1997. It was attended by 152 participants representing 33 countries. This lTM wasjointly organized by the Ris0 National Laboratory of Denmark (pilot country): the Laboratoire Associe de Meteorologic Physique, associated with the Centre National de la Recherche Scientifique, the Universite Blaise Pascal. and the Observatoire de Physique du Globe de Clermont-Ferrand, France (host country). We wish to express our gratitude to the sponsors that made this conference possible. In addition to tinancial support from NATO/CCMS, the conference received contributions from Centre National de Recherche Scientitique, Observatoire de Physique du Globe de Clermont-Ferrand, Universite Blaise Pascal, Electricite de France, lnstitut Francais du Pe- trole, Conscil Regional d'Auvergne, Conseil General du Puy de DC1I11e, Mairie de Clermont- Ferrand, SATCAR Semaine des arts techniques et culture de l'automobile et de la route.
This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.
In the summer of 2000 the German geo-research satellite CHAMP was launched into orbit. Its innovative payload arrangement and the low initial orbit allow CHAMP to simultaneously collect and almost continuously analyse precise data relating to gravity and magnetic fields at low altitude. In addition, CHAMP also measures the neutral atmosphere and ionosphere using GPS techniques. Three years after launch, more than 200 CHAMP investigators and co-investigators from all over the world met at the GeoForschungsZentrum in Potsdam to present and discuss the results derived from the extensive data sets of the mission. The main outcome of this expert meeting is summarized in this volume. The book offers a comprehensive insight into the present status of the exploitation of CHAMP data for Earth system research and practical applications in geodesy, geophysics and meteorology.
During the last decade developments in 3D Geoinformation have made substantial progress. We are about to have a more complete spatial model and understanding of our planet in different scales. Hence, various communities and cities offer 3D landscape and city models as valuable source and instrument for sustainable management of rural and urban resources. Also municipal utilities, real estate companies etc. benefit from recent developments related to 3D applications. To meet the challenges due to the newest changes academics and practitioners met at the 5th International Workshop on 3D Geoinformation in order to present recent developments and to discuss future trends. This book comprises a selection of evaluated, high quality papers that were presented at this workshop in November 2010. The topics focus explicitly on the last achievements (methods, algorithms, models, systems) with respect to 3D geo-information requirements. The book is aimed at decision makers and experts as well at students interested in the 3D component of geographical information science including GI engineers, computer scientists, photogrammetrists, land surveyors, urban planners, and mapping specialists.
Frozen Ground Engineering first introduces the reader to the frozen environment and the behavior of frozen soil as an engineering material. In subsequent chapters this information is used in the analysis and design of ground support systems, foundations, and embankments. These and other topics make this book suitable for use by civil engineering students in a one-semester course on frozen ground engineering at the senior or first-year-graduate level. Students are assumed to have a working knowledge of undergraduate mechanics (statics and mechanics of materials) and geotechnical engineering (usual two-course sequence). A knowledge of basic geology would be helpful but is not essential. This book will also be useful to advanced students in other disciplines and to engineers who desire an introduction to frozen ground engineering or references to selected technical publications in the field. BACKGROUND Frozen ground engineering has developed rapidly in the past several decades under the pressure of necessity. As practical problems involving frozen soils broadened in scope, the inadequacy of earlier methods for coping became increasingly apparent. The application of ground freezing to geotechnical projects throughout the world continues to grow as significant advances have been made in ground freezing technology. Freezing is a useful and versatile technique for temporary earth support, groundwater control in difficult soil or rock strata, and the formation of subsurface containment barriers suitable for use in groundwater remediation projects.
The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.
Underground thermal energy storage (UTES) provide us with a flexible tool to combat global warming through conserving energy while utilizing natural renewable energy resources. Primarily, they act as a buffer to balance fluctuations in supply and demand of low temperature thermal energy. Underground Thermal Energy Storage provides an comprehensive introduction to the extensively-used energy storage method. Underground Thermal Energy Storage gives a general overview of UTES from basic concepts and classifications to operation regimes. As well as discussing general procedures for design and construction, thermo-hydro geological modeling of UTES systems is explained. Finally, current real life data and statistics are include to summarize major global developments in UTES over the past decades. The concise style and thorough coverage makes Underground Thermal Energy Storage a solid introduction for students, engineers and geologists alike.
The aim of this book is to bring together a series of contributions from experts in the field to cover the major aspects of the application of geostatistics in precision agriculture. The focus will not be on theory, although there is a need for some theory to set the methods in their appropriate context. The subject areas identified and the authors selected have applied the methods in a precision agriculture framework. The papers will reflect the wide range of methods available and how they can be applied practically in the context of precision agriculture. This book is likely to have more impact as it becomes increasingly possible to obtain data cheaply and more farmers use onboard digital maps of soil and crops to manage their land. It might also stimulate more software development for geostatistics in PA.
Taking an engineering, rather than a mathematical, approach, Bounding uncertainty in Civil Engineering - Theoretical Background deals with the mathematical theories that use convex sets of probability distributions to describe the input data and/or the final response of systems. The particular point of view of the authors is centered on the applications to civil engineering problems, and the theory of random sets has been adopted as a basic and relatively simple model. However, the authors have tried to elucidate its connections to the more general theory of imprecise probabilities, Choquet capacities, fuzzy sets, p-boxes, convex sets of parametric probability distributions, and approximate reasoning both in one dimension and in several dimensions with associated joint spaces. If choosing the theory of random sets may lead to some loss of generality, it has, on the other hand, allowed for a self-contained selection of the topics and a more unified presentation of the theoretical contents and algorithms. With over 80 examples worked out step by step, the book should assist newcomers to the subject (who may otherwise find it difficult to navigate a vast and dispersed literature) in applying the techniques described to their own specific problems.
The NATO Advanced Research Workshop on "Transport Processes in the Middle Atmosphere" was held in Erice, Sicily, from November 23 through November 27, 1986. In addition to NATO, the workshop was supported by the International School of Atmospheric Physics of the Ettore Majorana Center for Scientific Culture, and by the National Research Council of Italy. The Organizing Committee was fortunate to enlist the participation of many of the experts in the field, and this book is an account of their contributions. In order to expedite publication and keep the results "as fresh as possible," it was decided to forego formal review of the papers; instead, the authors were asked to solicit internal reviews from their colleagues. Further, each paper was thoroughly discussed and criticized during the meeting, and those discussions have been taken into account in the preparation of the final version of the manuscripts. Occasional short presentations were made by some of the Workshop participants who wished to provide information complementary to that given in the invited talks. These presentations are not included in this book, which contains only the invited papers. The book is organized into five chapters corresponding to the different topics cov ered by the Workshop. The first two chapters contain general reviews of the dynamical climatology of the middle atmosphere and of the growing body of data available on the dis tribution of chemical constituents."
This book contains papers presented at the first Open Source Geospatial Research Symposium held in Nantes City, France, 8-10 July, 2009. It brings together insights and ideas in the fields of Geospatial Information and Geoinformatics. It demonstrates the scientific community dynamism related to open source and free software as well as in defining new concepts, standards or tools.
This book evolved from the 5th School of Environmental Research entitled "Persistent Pollution - Past, Present and Future", which has set a focus on Persistent Organic Pollutants (POPs), heavy metals and aerosols. - reconstruction of past changes based on the scientific analysis of natural archives such as ice cores and peat deposits,- evaluation of the present environmental state by the integration of measurements and modelling and the establishment of cause-effect-patterns,- assessment of possible environmental future scenarios including emission and climate change perspectives.
WOUIRG PARTY I: AlIALYSIS or POLLUTAIITS Chairman: A. LIBERTI (CNR - Roma, I) Summary by the Chairman 3 Detection of gaseous nitric acid by OH (A~X) - fluorescence gen- erated by ArF-laser irradiation Th. PAPENBROCK and F. STUHL 5 Preparation of standard atmospheres of nitrogen acid compounds: the N02 permeation tube I. ALLEGRINI, P. BUTTINI, V. DI PALO and M. POSSANZINI 15 Automated denuder systems J. SLANINA, A. M. VAN WENSVEEN, C. A. M. SCHOONEBEEK and P. I. VOORS 25 A battery-powered light-weight ozone analyzer for use in the troposphere and stratosphere S. SARAND, W. SPEUSER and U. SCHURATH 33 H202 in solid precipitation A. NEFTEL, A. SIGG and P. JACOB 45 Detection of nitrated and oxygenated polyaromatic hydrocarbons (PAR) in suspended particulate matter sampled in urban areas and their relation with anthropogenic emission and photochemical smog formation A. CECINATO, E. BRANCALEONI, C. DI PALO, R. DRAISCI and P. CICCIOLI 58 Field intercomparison of sampling and analytical methods for S02 and S04 in ambient air K. NODOP and J. E. HANSSEN 69 Field measurements on the use of denuders for the evaluation of acid deposition Istituto sull'Inquinamento Atmosferico del C. N. R. , Mon- rotondo, Italy 79 -vii- Use of air - S02 mixtures for intercomparison of S02 monitors in the EEC M. PAYRI S SAT , H. RAU and G. SERRINI 103 Determination of polychlorinated dibenzo-P-dioxins and dibenzofurans in outdoor air P. KIRSCHMER and M. |
You may like...
Turbulent Combustion Modeling…
Tarek Echekki, Epaminondas Mastorakos
Hardcover
R5,418
Discovery Miles 54 180
|