![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > General
In November 1988 the "'Third Oberursel Symposium" devoted to the problems of input of pollutions into forest-ecosystems and their effects on plants or soil convened. After several years of intensive research on the effects of pollutions on forest ecosystems it is obvious that not a single specific pollutant can be made responsible but a mixture of several components act together or interact with each other. The contributions of the workshop _ reflect to a large extend the results of research projects which were started at the beginning of the eighties. They review our improved knowledge on the patterns of concentration, of the mechanism of wet and dry deposition and fog interception, modelling studies and the effect of the processes on plant receptors and surfaces. Since the 1985 symposium the pathways of pollutants leading to biological damage have been examined and are more clearly recognised. The book reflects the common interest and the continuous effort of scientists from many different disciplines to better understand the physical and chemical processes which finally lead to the observed damage of forest-trees. Comparing the conclusions of the contributions of this book _ with the results of the first Oberursel symposium in 1981, our knowledge on the relevance of the different mechanisms leading to forest-decay has been considerably improved. The book indicates also in which directions future work should be concentrated. Again, I have to thank the authors for their cooperation by submitting their recent research-results."
The book comprises innovative research presented at the 14th Conference of the Association of Geographic Information Laboratories in Europe (AGILE), held in 2011 in Utrecht, The Netherlands. The scientific papers cover a large variety of fundamental research topics as well as applied research in Geoinformation Science including measuring spatiotemporal phenomena, quality and semantics, spatiotemporal analysis, modeling and decision support as well as spatial information infrastructures. The book is aimed at researchers, practitioners and students who work in various fields and disciplines related to Geoinformation Science and technology.
The variability of the Sun is well established, as well as that of the Earth's climate. To what extent the two are connected, in the sense that solar variability drives climate, is the subject of considerable research and, in some cases, controversy. After an earlier workshop at the International Space Science Institute (ISS!) on Solar Composition and its Evolution, two ofthe participants came up with the idea to initiate a similar project on the topic of Solar Variability and Climate, a work shop aimed at obtaining an overview of the current knowledge of the variability of the Sun and of the Earth's Climate, and of their possible connections. A further, equally important objective was the strengthening of the interaction between the two, often diverse communities of solar physicists and climatologists. ISSI took up this idea and invited six convenors, E. Friis-Christensen, C. Froh lich, J. Haigh, J. Hansen, M. Schussler, and S. Solanki, who subsequently formu lated the aims and goals of the workshop, nominated a list of invitees, drafted a programme of introductory talks, and structured the workshop into three sections. For each section there was a concluding discussion session moderated by two co chairs. Moreover, there was a number of contributed poster papers for which there were two viewing sessions. The main intent of this format was to leave ample time for open, informal discussions, which is one of the principal aims of ISSI.
The historical and epistemological reflection on the applications of mathematical techniques to the Sciences of Nature - physics, biology, chemistry, and geology - today generates attention and interest because of the increasing use of mathematical models in all sciences and their high level of sophistication. The goal of the meeting and the papers collected in this proceedings volume is to give physicists, biologists, mathematicians, and historians of science the opportunity to share information on their work and reflect on the and mathematical models are used in the natural sciences today and in way mathematics the past. The program of the workshop combines the experience of those working on current scientific research in many different fields with the historical analysis of previous results. We hope that some novel interdisciplinary, philosophical, and epistemological considerations will follow from the two aspects of the workshop, the historical and the scientific* This proceedings includes papers presented at the meeting and some of the results of the discussions that took place during the workshop. We wish to express our gratitude to Sergio Monteiro for all his work, which has been essential for the successful publication of these proceedings. We also want to thank the editors of Kluwer AcademidPlenum Publishers for their patience and constant help, and in particular Beth Kuhne and Roberta Klarreich. Our thanks to the fallowing institutions: -Amministrazione Comunale di Arcidosso -Comunita Montana del Monte Amiata *Center for the History of Physics, UCLA -Centre F.
The existence and crucial role played by large-scale, organized motions in turbulent flows are now recognized by industrial, applied and fundamental researchers alike. It has become increasingly evident that coherent structures influence mixing, noise, vibration, heat transfer, drag, etc. This volume contains selected papers from the IUTAM symposium entitled Eddy Structure Identification in Free Turbulent Shear Flows' which was held in Poitiers, France, October 12--14, 1992. The purpose of the IUTAM symposium was to address some important questions, which are documented in this volume: What is the state of the art of structure identification? How do these approaches work? How do the results from different techniques compare with one another? What kind of information can be obtained from the various methods (e.g., instantaneous results, vorticity, averages, statistics, etc...)? What are the new directions in detection methods and, correspondingly, what are their implications for turbulent flow analysis and prediction methods? /LIST This book will contribute to the knowledge of coherent structure identification processes and will help guide future experimental, numerical and theoretical research in this area. Turbulence researchers will find this volume an invaluable reference."
Among the chemical and physical processes involved in the transformation of pollutants between their sources and their ultimate deposition, those associated with clouds, aerosols and precipitation must be rated as the most difficult both to study and to understand. This book presents a variety of recent advances in this field, including the properties and composition of aerosol particles, chemical transformation and scavenging processes, the relationship between liquid-phase chemistry and cloud micro-physics, entrainment, evaporation and deposition, trends in high Alpine pollution, transport processes, and developments in instrumentation. This book is Volume 5 in the ten-volume series on Transport and Chemical Transformation of Pollutants in the Troposphere.
Investigations of atmospheric pollution have recently reached a new stage. In addition to the estimation and the monitoring of pollutant concentrations in the air around their sources, by way of observational data and also by calcu lations on the basis of theoretical research, it is now possible to make short term forecasts of air pollution and to use them to regulate industrial emissions. Many countries are interested in such forecasts. In the Soviet Union the organizations of the State Committee of the USSR for Hydrometeorology (Goskomgidromet) are carrying out a wide-scale scientific programme on the devising of methods to forecast atmospheric pollution. Prognostic groups are organized in territorial hydrometeocenters; in essence a new forecasting service has been established. Nowadays, in more than 200 towns of the USSR predictions are made and transmitted to large enterprises for the purpose of taking the necessary steps to preserve air qua lity. To ensure an operative working of this service, Methodological Instruc (1979) have been issued, as well as other instructions and guides. Wide tions scale verifications of proposed calculating methods have been made. Prob lems of forecasting and regulating air pollution have become evident lately in other countries as well. Much attention to these problems is payed by the World Meteorological Organization (WMO). They have been widely dis cussed in a number of international conferences and meetings for modelling and investigating pollutant distribution in the atmosphere. The number of publications on this subject is rapidly increasing."
Do changes in stratospheric ozone relate to changes in UV-B irradiance and do both relate to life on Earth? This volume presents the latest data available in the basic scientific disciplines associated with these questions. The key topics are the interactive factors between the various research elements and the measurements needed to both validate ozone depletion and monitor UV flux changes in the biosphere.
The Arctic troposphere (0 to ca. 8 km) plays an important role in environmental concerns for global change. It is a unique chemical reactor influenced by human activity and the Arctic ocean. It is surrounded by industrialized continents that in winter contribute gaseous and particulate pollution (Arctic haze). It is underlain by the flat Arctic ocean from which it is separated by a crack-ridden ice membrane 3 to 4 m thick. Ocean to atmosphere exchange of heat, water vapor and marine biogenic gases influence the composition of the reactor. From September 21 to December 21 to March 21, the region north of the Arctic circle goes from a completely sunlit situation to a completely dark one and then back to light. At the same time the lower troposphere is stably stratified. This hinders vertical mixing. During this light period, surface temperature reaches as low as -40 DegreesC. In this environment, chemical reactions involving sunlight are generally much slower than further south. Thus, the abundance of photochemically reactive compounds in the atmosphere can be high prior to polar sunrise. Between complete dark in February and complete light in April, a number of chemical changes in the lower troposphere take place.
The rapid increase in environmental measurements during the past few decades is associated with (1) increasing awareness of the complex relations linking biological responses to atmospheric variables, (2) development of improved data acquisition and handling equipment, (3) the application of modeling to environmental problems, and (4) the implementation of large, cooperative studies of international scope. The consequences of man's possible alteration of the environment have increased our interest in the complex nature of biological responses to meteorological variables. This has generated activity in both measurements and in the application of modeling techniques. The virtual explosion of modeling activity is also associated with the development oflarge computers. The testing of these models has demonstrated the need for more, different, and better environmental data. In addition, technological developments, such as integrated circuits, have reduced the cost, power consumption, and complexity of data acquisition systems, thus promoting more environmental measurements. The emergence of scientific cooperation on a global scale has increased measurement activities markedly. The International Geophysical Year (1958) has been followed by the International Hydrologic Decade, the Inter national Biological Program, the Global Atmospheric Research Program, and a host of environmental studies of a regional nature that have all emphasized field data collection."
As we are moving ahead into the 21st century, our hunger for cost effective and environmentally friendly energy continues to grow. The Energy Information Administration of US has forecasted that only in the first two decades of the 21st century, our energy demand will increase by 60% compared to the levels at the end of the 20th century. Fossil fuels have been traditionally the major primary energy sources worldwide, and their role is expected to continue growing for the forecasted period, due to their inherent cost competitiveness compared to non-fossil fuel energy sources. However, the current fossil energy scenario is undergoing significant transformations, especially to accommodate increasingly stringent environmental challenges of contaminants like sulfur dioxide, nitrogen oxides or mercury, while still providing affordable energy. Furthermore, traditional fossil fuel utilization is inherently plagued with greenhouse gas emissions from combustion, especially carbon dioxide from stationary sources as well as from mobile sources. Should worldwide government policies dictate a reduction of greenhouse gas emissions, such as proposed by the Kyoto Protocol and the implementation of carbon taxes, fossil fuels would lose their significant competitive appeal in favor of nuclear energy and renewable energy sources. However, the current non-fossil fuel energy share of the worldwide energy market is merely below 15%, and therefore, it is more likely that fossil fuel energy producers would adapt to the new requirements by developing and implementing emission control technologies, and emission trades among other strategies."
This book is an outgrowth of the NSF-CBMS conference Nonlinear Waves GBP3 Weak Turbulence held at Case Western Reserve University in May 1992. The principal speaker at the conference was Professor V. E. Zakharov who delivered a series of ten lectures outlining the historical and ongoing developments in the field. Some twenty other researchers also made presentations and it is their work which makes up the bulk of this text. Professor Zakharov's opening chapter serves as a general introduction to the other papers, which for the most part are concerned with the application of the theory in various fields. While the word "turbulence" is most often associated with f:l. uid dynamics it is in fact a dominant feature of most systems having a large or infinite number of degrees of freedom. For our purposes we might define turbulence as the chaotic behavior of systems having a large number of degrees of freedom and which are far from thermodynamic equilibrium. Work in field can be broadly divided into two areas: * The theory of the transition from smooth laminar motions to the disordered motions characteristic of turbulence. * Statistical studies of fully developed turbulent systems. In hydrodynamics, work on the transition question dates back to the end of the last century with pioneering contributions by Osborne Reynolds and Lord Rayleigh.
In Nordic literature a remarkable discussion of the northern light appears in Kongespeilet (The King's Mirror) a thirteenth-century Norwegian chronicle. It is described in vivid detail as the following translated excerpts demonstrate: These northern lights have this peculiar nature, that the darker the night is, the brighter they seem, and they always appear at night but never by day, most frequently in the densest darkness and rarely by moonlight. In appearance they resemble a vast flame of fire viewed from a great distance. It also looks as if sharp points were shot from this flame up into the sky; these are of uneven height and in constant motion, now one, now another darting highest; and the light appears to blaze like a living flame. Three different theories for the origin of the northern light were suggested in this book. Numerous naturally occurring heavenly phenomena have been observed and enjoyed as long as the Earth has been inhabited, but hardly any of them has stirred man's imagination, curiosity and fear as much as the northern light. The northern light is certainly one of the most spectacular of nature's phenomena.
Planet Earth is part of our Galactic environment, not just the product of it, and it is still today influenced by phenomena related to Galactic forces. Specifically, our planet is affected by its near environment, in particular the small bodies in the Solar System. This book reviews the processes which cause the collisions of these small bodies with the Earth as well as the consequences of such collisions. The various articles take the reader through the Galaxy-Solar System connection to the orbital dynamics of the small bodies and to their number and distribution in near-Earth space. The hazards of the impacts of small bodies on Earth are evaluated, and the geophysical records of such impacts are discussed. The book takes the reader to the forefront of research on both impact cratering and the origin and evolution of small bodies in the Solar System. Thus it brings together two subjects, geophysics and astronomy, which are usually discussed in separate volumes but are closely knit together in this particular area of research.
The environmental field is deep and wide. In the flood of information, how can people understand the underlying causes of what they hear about the environment from newspapers and television? This book was originally published in Japanese, with the aim of providing basic information about the ideas and methods to see and understand the interconnection between nature and human activities from a systematic point of view. The author subsequently prepared an English version of the same material for use as a textbook for the Global Environmental Leaders Program at Nagoya University, where he taught many students from Asia and Europe. The book covers diverse environmental issues such as climatic change, biodiversity preservation, energy conservation, and resource recycling. Readers can learn common methods of analysis and thinking to identify the core essence of economic and ecological interdependence, to look at problems from an overarching perspective, and to consider countermeasures to be taken.
279 4. 2. Basic formulation 280 4. 3. Variations on the theme 285 4. 4. C. S. Parameters 286 5. CONCLUSIONS 289 REFERENCES 290 CHAPTER 12 FINITE ELEMENT METHODS FOR FILLS AND EMBANKMENT DAMS D. J. NAYLOR 1. INTRODUCTION 291 2. NUMBER OF LAYERS - ACTUAL AND ANALYTICAL 292 3. DEFORMATION IN A RISING FILL 292 4. BASIC FINITE ELEMENT PROCEDURE 292 5. INTERPRETATION OF FINITE ELEMENT DIS PLACEMENTS - 1D CASE 294 6. NEW LAYER STIFFNESS REDUCTION 296 7. MODELLING COMPACTION 300 8. FINITE ELEMENT EFFECTIVE STRESS TECHNIQUES 302 8. 1. Undrained effective stress analysis 302 8. 2. Known pore pressure change analysis 305 9. FIRST FILLING AND OPERATION - GENERAL 306 10. LOADING DUE TO IMPOUNDING 308 10. 1. upstream membrane dam 308 10. 2. Internal membrane dam 308 10. 3. Zoned embankment dams 312 11. ANALYSIS OF FIRST FILLING AND OPERATION 312 11. 1. First filling 312 11. 2. Steady seepage condition 314 11. 3. Finite element considerations 314 12. COLLAPSE SETTLEMENT 314 xili 12. 1. Nobari and Duncan's method 317 12. 2. Generalisation of Nobari and Duncan's method 319 12. 3. One-dimensional example 320 323 13. APPLICATIONS 13. 1. carsington dam 323 13. 2. Beliche dam 325 13. 3. Monasavu dam 330 REFERENCES 335 APPENDIX: DERIVATION OF EQUIVALENT LAYER STIFFNESS 332 CHAPTER 13 CONCRETE FACE ROCKFILL DAMS NELSON L. DE S. PINTO 1. INTRODUCTION 341 2. CURRENT DESIGN PRACTICE 343 2. 1. Evolution 343 2. 2. Embankment 344 2. 2. 1."
Since the late 1960s the Indonesian state of East Kalimantan has witnessed a marked increase in the impact of human activities chiefly commercial logging and agricultural exploitation. Located on the island of Borneo, East Kalimantan also was subjected to prolonged droughts and extensive wildfires in 1982-83 and 1997-98 that were linked to the El Nino-Southern Oscillation (ENSO) phenomenon. The changes in the rainforest ecosystem in East Kalimantan during this 15-year cycle of severe ENSO events are the subject of this book. With an eye toward development of rehabilitation techniques for sustainable forest management, the authors examine possible interactive effects of drought, fire, and human impacts on the flora and fauna of the area.
Over the last dozen years there has been a great development in the study of matter on the micro-scale by means of the light microscope, which has coincided with the rapid growth of auto mation and the use of computers. The manufacturers have responded to this challenge, and there is now available a large choice of modules for use with the microscope, both on the biological and non-biological side. This book is on microscope photometry. Photometry on the macro-scale can be applied to features of not less than about one millimetre in size. Below this lies the realm of microscope photometry which will be discussed both in theory and in practice. As a general rule no discussion of technical design of equipment is included, as such information is available in the handbooks of the particular manufacturers of equipment. It attempts to cover all the uses of the optical microscope photometer with its auxiliary equipment, and the first chapter describes the topics covered. In using the word' light' we apply its meaning to extend from UV to near IR. No attempt has been made to list all the works consulted. For each subject treated in this book a list is given of books and papers considered to be of key importance; in these will be found more detailed bibliographies."
The reader may be surprised to learn that the word "aeronomy" is not found in many of the standard dictionaries of the English language (for exam ple. Webster's International dictionary). Yet the term would appear to exist, as evidenced by the affiliations of the two authors of this volume (Institut d'Aeronomie, Brussels, Belgium; Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA). Perhaps part of this obscu rity arises because aeronomy is a relatively new and evolving field of endeavor, with a history dating back no farther than about 1940. The Chambers dic tionary of science and technology provides the following definition: "aeronomy (Meteor. ). The branch of science dealing with the atmosphere of the Earth and the other planets with reference to their chemical com position, physical properties, relative motion,"
The Monte Carlo method is based on the munerical realization of natural or artificial models of the phenomena under considerations. In contrast to classical computing methods the Monte Carlo efficiency depends weakly on the dimen sion and geometric details of the problem. The method is used for solving complex problems of the radiation transfer theory, turbulent diffusion, chemi cal kinetics, theory of rarefied gases, diffraction of waves on random surfaces, etc. The Monte Carlo method is especially effective when using multi-processor computing systems which allow many independent statistical experiments to be simulated simultaneously. The weighted Monte Carlo estimates are constructed in order to diminish errors and to obtain dependent estimates for the calculated functionals for different values of parameters of the problem, i.e., to improve the functional dependence. In addition, the weighted estimates make it possible to evaluate special functionals, for example, the derivatives with respect to the parameters. There are many works concerned with the development of the weighted estimates. In Chap. 1 we give the necessary information about these works and present a set of illustrations. The rest of the book is devoted to the solution of a series of mathematical problems related to the optimization of the weighted Monte Carlo estimates."
A. AULICIEMS Living organisms respond to atmospheric variability and variation, and over time morphological and process differentiations occur both within individuals and the species, as well as in the environment itself. In systems language, the concern is with the atmospheric process-response system of energy and matter flows within the biosphere. The study of such interactions between living organ isms and the atmospheric environment falls within the field of bioclimatology, alternatively referred to as biometeorology. Amongst the more readily recognizable study areas under the bioclimatolog that investigate the effects of atmospheric variation and ical umbrella are those variability upon 1. Terrestrial and aquatic ecology (zoological, botanical and ethological), natural resource production and management (including silviculture, agri culture, horticulture, and grassland, wetland, and marine systems). 2. Stress, morbidity and mortality in animals and humans (including physiolog ical and psychological adaptations). 3. The built environment (all aspects of planning, urban design, and architec ture). 4. Economic systems and social activities (including organizational, individual, and group behavior and management). In addition, bioclimatology is very much concerned with the feedback loop, that is both 5. The inadvertent modification of the atmosphere by living systems, especially human, i.e., studies of pollution, changes to atmospheric amenity, and the processes of deterioration of landscape (deforestation and desertification), and 6. The advertent modifications of natural energy and matter flows within urban areas and indoor climate constructions."
It has been known for some time that the behavior of the short-term fluctuations of the earth's atmosphere resembles that of a chaotic non-linear dynamical system, and that the day-to-day weather cannot be predicted beyond a few weeks. However, it has also been found that the interactions of the atmosphere with the underlying oceans and the land surfaces can produce fluctuations whose time scales are much longer than the limits of deterministic prediction of weather. It is, therefore, natural to ask whether it is possible that the seasonal and longer time averages of climate fluctuations can be predicted with sufficient skill to be beneficial for social and economic applications, even though the details of the day-to-day weather cannot be predicted beyond a few weeks. The main objective of the workshop was to address this question by assessing the current state of knowledge on predictability of seasonal and interannual climate variability and to investigate various possibilities for its prediction.
Anthropogenic release of carbon dioxide into the atmosphere has
been recognized as the primary agent in global climate change.
Acidic deposition and its effect on aquatic ecosystems have become major scientific and public policy issues in the United States since the early 1970s, and many diverse studies have been completed. This book is the first comprehensive, integrated synthesis of available information on current and potential effects of acidic precipitation on lakes and streams in geographic regions with a high number of low-alkalinity surface water from the Adirondacks and the Southern Blue Ridge to the Upper Midwest to the Rocky Mountains, the Sierra Nevada, and the Cascades. Written by leading authors, the book examines the current status of water chemistry and characterizes the processes controlling water chemistry on a regional basis by using and comparing high-quality data sets. Methods for the assessment of long-term changes in water chemistry and their effects in fish and other biota are also presented. The book amply illustrates the substantial diversity among geographical regions with respect to the nature of surface waters and the complexity of their response to acidic deposition. This volume will be of great interest to researchers in limnology, aquatic ecology, environmental chemistry, hydrology, and atmospheric sciences. It will also serve as an important reference for environmental managers and policy makers.
The extraordinary growth and development of atmospheric sciences during the last dec ades, and the concern for certain applied problems, such as those related to the environ ment, have prompted the introduction of college and university courses in this field. There is consequently a need for good textbooks. A few appropriate books have appeared in the last few years, aimed at a variety of levels and having different orientations. Most of them are of rather limited scope; in par ticular, a number of them are restricted to the field of dynamics and its meteorological applications. There is still a need for an elementary, yet comprehensive, survey of the terrestrial atmosphere. This short volume attempts to fill that need. This book is intended as a textbook that can be used for a university course at a second or third year level. It requires only elementary mathematics and such knowledge of physics as should be acquired in most first-year general physicS courses. It may serve in two ways. A general review of the field is provided for students who work or plan to work in other fields (such as geophysics, geography, environmental sciences, space research), but are interested in acquiring general information; at the same time, it may serve as a general and elementary introduction for students who will later specialize in some area of atmospheric science." |
You may like...
Origins and Foundations of Computing…
Heinz Nixdorf Museums Forum
Hardcover
Mechanics of Microstructured Solids 2…
J.-F. Ganghoffer, Franco Pastrone
Hardcover
R2,703
Discovery Miles 27 030
Segmentation and Recovery of…
Ales Jaklic, Ales Leonardis, …
Hardcover
R2,804
Discovery Miles 28 040
|