![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > General
This book contains most of the invited papers and contributions pre sented at the Symposium/Workshop on Solar-Terrestrial Influences on Weather and Climate which was held at The Ohio State University on 24-28 July 1978. The authors and publisher have made a special effort for rapid publi cation. The length of the individual papers in this book were delib erately limited by the editors. Direct financial support for the Symposium/Workshop was provided by NASA. Palo Alto Billy M. McCormac Columbus Thomas A. Seliga January 1979 xiii SYMPOSIUH/WORKSHOP CONCLUSIONS Billy M. McCormac Department 52-l0/B202 Lockheed Palo Alto Research Laboratory 3251 Hanover Street Palo Alto, CA 94304 USA Thomas A. Seliga Atmospheric Sciences Program The Ohio State University 2015 Neil Avenue Columbus, OH 43210 USA A. INTRODUCTION The Symposium/Workshop on Solar-Terrestrial Influences on Weather and Climate was held at The Ohio State University on 24-28 July 1978. Its purpose was to provide an international forum for the presentation and discussion of recent research results and ideas regarding the question whether variations in solar outputs affect terrestrial weather and cli mate and, if so, to what extent and through what mechanisms. The Sym posium focused on the results of previous studies and consisted of both invited and contributed papers. The Workshop, on the other hand, built upon these deliberations to develop ideas and directions for future research. Over one hundred persons from eight countries attended the Symposium/ Workshop.
Earth system science is traditionally split into various disciplines (Geology, Physics, Meteorology, Oceanography, Biology etc.) and several sub-disciplines. Overall, the diversity of expertise provides a solid base for interdisciplinary research. However, gaining holistic insights into the Earth system requires the integration of observations, paleoclimate data, analysis tools and modeling. These different approaches of Earth system science are rooted in various disciplines that cut across a broad range of timescales. It is, therefore, necessary to link these disciplines at a relatively early stage in PhD programs. The linking of 'data and modeling', as it is the special emphasis in our graduate school, enables graduate students from a variety of disciplines to cooperate and exchange views on the common theme of Earth system science, which leads to a better understanding of processes within a global context.
La obra titulada: "ni creacion ni evolucion" es un tratado sobre la "decodificacion del origen del hombre en la tierra." Mas que un simple libro es una tesis o teoria basada en un analisis logico, minuciosamente elaborado con el fin de demostrar el origen del hombre, de las razas y del tiempo. Se trata de una teoria seria y responsable fundamentada en conceptos y postulados que podrian esclarecer verdades que la humanidad desconoce y ha desconocido por miles de anos las cuales se han mantenido bajo un velo de misterio. Tratamos ademas sobre el reordenamiento del tiempo como elemento basico en la definicion del origen del hombre y de la historia. Es un tratado en el que el ser humano ha de descubrir su verdadera identidad como ser universal descendiente de extra-inteligencias desde antes de su aparicion en la tierra sin que haya pasado por ningun tipo transformacion, experiencia o etapa evolutiva. Esta obra busca dar respuestas claras y precisas a confusiones e interrogantes que la humanidad ha arrastrado durante toda la historia. Los temas a tratar son: 1ro. La decodificacion del origen del hombre en la Biblia. 2do. El origen segun las ciencias. 3ro. Origen de las razas. 4to. Codificacion del tiempo. 5to. Decodificacion del origen despues de los dinosaurios. 6to. Codificacion del futuro.
Hurricanes of the North Atlantic Ocean have left their imprint on the landscape and human cultures for thousands of years. In modern times, fewer lifes have been lost due, in part, to the development of modern communication systems, and to improved understanding of the mechanisms of storm formation and movement. However, the immense growth of human populations in coastal areas, which are at risk to hurricanes, has resulted in very large increases in the amount of property damage sustained in the last decade in the Atlantic, Gulf of Mexico and Caribbean regions. This book is of interest to climatologists and meteorologists and as source of information for policymakers and emergency management planners.
Practical reservoir engineering techniques have been adequately described in various publications and textbooks, and virtually all useful techniques are suit able for implementation on a digital computer. Computer programs have been written for many of these techniques, but the source programs are usually not available in published form. The purpose of this book is to provide a central source of FORTRAN-coded algorithms for a wide range of conventional reservoir engineering techniques. The book may be used as a supplementary text for courses in practical reservoir engineering. However, the book is primarily intended for practicing reservoir engineers in the hope that the collection of programs provided will greatly facil itate their work. In addition, the book should be also helpful for non-petroleum engineers who are involved in applying the results of reservoir engineering analysis. Sufficient information is provided about each of the techniques to allow the book to be used as a handy reference. ix INTRODUCTION This book provides many of the useful practical reservoir engineering (conven tional) techniques used today in the form of FORTRAN codes. The primaI: y objectives have been to provide the simplest possible method for obtaining reli able answers to practical problems. Unfortunately, these codes can usually be applied by simply following a cookbook approach. However, if at all possible, the solutions obtained should be verified and cross-checked by some other means and, most important, should be checked for reasonability." Within the framework of Ispra Courses, a course on "Applications of Remote Sensing to Agrometeorology" was held from April 6th to 10th, 1987 at the Joint Research Centre of the European Communities, Ispra Italy. The purpose of the course was to familiarize scientists, active in Agrometeorology and related fields, with remote sensing techniques and their potential applications in their respective disciplines. Conventional ground investigations in various fields of natural sciences such as hydrology, pedology and agrometeorology can be supple mented by a range of instruments carried by airborne or earth orbiting platforms. The last few years, in particular, have seen many developments in this respect and a growing amount of information can now be derived not only from dedicated earth resources satellites such as the LANDSAT and SPOT, but also from other platforms such as METEOSAT and the series of NOAA-TIROS. Future platforms (ERS-l, Space Station, etc.) with their advanced sensors will further broaden the range of applications open to the investigators. The use of these data sources, together with field investigations, can lead, at a reduced cost, to a better characterization of the spatial and temporal properties of natural systems."
components dissolve. The alumino silicate minerals are the great example of the incongruent class, releasing Na], K+, HCO-, etc. ions in reaction with J water but retaining most of their atoms in re-ordered solids such as kaolinite. The karst minerals are all congruent in normal conditions. Incongruent solution of dolomite and precipitation of calcite may occur in some exceptional conditions mentioned later. The sample of congruent minerals in Table 3. 1 contains all the common elements of crustal rocks except Fe, and furnishes a majority of the common dissolved inorganic species. The range of solubility is enormou . Gibbsite is an example that is insoluble to all intents and purposes; even in the most favourable circumstances encountered on the surface of this planet physical processes will disaggregate it and remove it as colloids or larger grains before there is significant solution damage. Rock salt (halite) is so soluble that it is rapidly destroyed in outcrop except in the driest places; it is principally important for its role in interstratal karstification. Sylvite and mirabilite are rarely encountered and never in great bulk. They occur as minor secondary cave minerals (see section 8. 4). Gypsum and anhydrite are quite common in outcrop. Karst features develop upon them rapidly because of their comparatively high solubility. Limestone and dolomite are common in outcrop. Their maximum solubility varies with environmental conditions but never approaches that of gypsum. Quartzite and siliceous sandstones are equally common in outcrop.
Since 1962 the Desert Institute of the former Academy of Science of the USSR has been conducting research work in the arid and semi-arid zones of central Asia. This outstanding experience in desert and desertification problems, and the possibilities of sustainable land use under difficult environmental conditions is summarized here. The book also gives an overview of the Institute's consulting work within the framework of international projects. This is the first publication allowing readers outside the Russian-speaking world to obtain concise information about the specific constraints and development possibilities of central Asian drylands.
Rapidly increasing concentrations of greenhouse gases in the atmosphere, emerging evidence of global warming and the threat of uncontrollable climate feedback mechan:i,sms are now triggering international action to reduce the emissions of greenhouse gases. In 1989 the Intergovernmental Panel on Climate Change (IPCC), established by the United Nations Environment Pro gramme and the World Meteorological Organization, started preparations for an international convention on climate. This convention is to be followed by protocols (agreements) on the reduction of the emissions of greenhouse gases and other measures and implementation mechanisms to preserve the global climate. After the CFC's, CO is the next in line, as the sources 2 and abatement measures for CH and N 0 are as yet insuffi 4 2 ciently understood. However, the abatement of CO . is a far 2 reaching issue. It will require major changes wi thin the most important sectors of the economy: energy (production and use) and agriculture (deforestations and land use pat terns). Given this situation it is not so surprising that national governments are hesitant to take action. One reason is the remaining uncertainty regarding the rat,e and the extent of climate change. However, further analysis will show that the uncertainties will be outweighed by the increasing risks when measures to reduce the emission of greenhouse gases are delayed.
This book was written with the objective of providing geotechnical engineers with a practical guideline on how to cope with landslides as well as of acquaint ing them with the present state of physical fundamentals and scientific expla nations for the phenomenon of landslides. The book is based on my personal experiences, gathered over decades of work as geotechnical engineer on construction sites in Austria and many other parts of the world, which I also use in my lectures at the Technical University of Graz, Austria. The method of stabilizing lands lides by short-circuit conductors has been developed by myself and has been patented in Germany and Italy. A number of publications already exists (see References) on this method, and of course I also deal in this book with its theoretical and practical aspects. Here I want to thank my assistants, Messrs. J. Dalmatiner, K. Eigenberger, E. Garber, H. Kienberger, R. Potscher, and W. Prodinger, for working with me on various projects and for assisting me in the drafting of some chapters of this book, Mr. A. Trippl for preparing the illustrations, and my wife for many a Sunday worked through with me."
Over the past decade there has been considerable interest in the effects of atmospheric deposition on forest ecosystems. This volume summarizes the results of the Integrated Forest Study (IFS), one of the most comprehensive research programs conducted. It involved intensive measurements of deposition and nutrient cycling at seventeen diverse forested sites in the United States, Canada, and Norway. The IFS is unique as an applied research project in its complete, ecosystem-level evaluation of nutrient budgets, including significant inputs, outputs, and internal fluxes. It is also noteworthy as a more basic investigation of ecosystem nutrient cycling because of its incorporation of state-of-the-art methods, such as quantifying dry and cloud water deposition. Most significantly, the IFS data was used to test several general hypotheses regarding atmospheric deposition and its effects. The data sets also allow for far-reaching conclusions because all sites were monitored over the same period using comparable instruments and standardized protocols.
General circulation model (GCM) experiments in the late 1970's indicated that the climate is sensitive to variations in evaporation at the land surface. Thus, in the context of climate modeling, it became important to develop techniques which would realistically estimate the evaporation flux on land. Land Surface Evaporation: Measurement and Parameterization discusses strategies for the use of experimental data in developing and testing parameterization schemes of the evaporation flux in GCM's. The book reviews state-of-the-art techniques, such as remote sensing, which measure evaporation fluxes over continental surfaces. It evaluates their relevance with respect to the various spatial and temporal scales of interest. This book will provide researchers in climatology, meteorology, hydrology and water management, and remote sensing with a thorough overview of current research in land surface evaporation. It will also give young scientists insight into surface processes.
The occurrence of high concentrations of ozone during summer episodes in the troposphere over Europe is a problem still unsolved. Although a number* of measures have been implemented that will achieve a further reduction of precursor emissions in the next years, this will not be sufficient to reduce the ozone concentration to levels below thresholds set up to protect human health and plants. Thus, further reductions of emissions of volatile organic compounds and nitrogen oxides are necessary. However, with regard to the increasing costs associated with increasing emission reduction, it is essential to implement abatement strategies, that are effective, i.e. achieving the environmental aim set up, and efficient, i. e. doing this with the least costs possible. In this book, the authors describe the features and the application of a methodology and a model system to identify effective and efficient strategies to reduce ambient concentrations of tropospheric ozone to comply with thresholds set up to protect human health, agricultural crops and ecosystems. Furthermore, macroeconomic impacts of such strategies are addressed and, as burden and benefits of these strategies are not equally distributed between countries, different burden sharing schemes are discussed. The content of this book is based on results of a comprehensive research project, the project INFOS (assessment of policy instruments for efficient ozone abatement strategies in Europe), funded by the European Commission (Directorate General XII) under the Fourth Framework Programme for research, technological development and demonstration activities.
Processes of synchronization and interaction play a very special role in different physical problems concerning the dynamics of the Earth's interior; they are of particular importance in the study of seismic phenomena, and their complexity is strongly affected by the variety of geological structures and inhomogeneities of the medium that hamper the course of these processes and their intensity. The attempt to tackle these problems is a great challenge from experimental, observational and theoretical point of view. We present in this Monograph the theoretical and experimental results achieved in the frame of the European Project "Triggering and synchronization of seismic/ acoustic events by weak external forcing as a sign of approaching the critical point" (INTAS Ref. Nr 05-1000008-7889); in this Project, which was inspired by Professor Tamaz Chelidze, our aim was to give grounds for better understanding and interpretation of dynamical interactive processes of physical ?elds, both found in the laboratory experiments as well as in ?eld observations. One of the leading problems - related to synchronization and interaction of different physical ?elds in fracture processes concerns triggering and initiation of rupture and displa- ments within the Earth interior. From this point of view, the results from laboratory studies on synchronization and interaction and those found and involved in ?eld observations, helped to improve the theoretical background. Reversely, some of the presented new theoretical approaches have served to stimulate laboratory and ?eld studies.
This volume contains a selection of papers presented to the Fourth International Symposium on Environmental Biogeochemistry (ISEB), and a conference on Biogeochemistry in Relation to Mining Industry and Environmental Pollution (Leaching Conferenc, held in Canberra, Aust ralia on August 26-31 and September 3-4, 1979, respectively. The ISEB were established to provide "a forum for uninhibited exchange of information and ideas among the biological, chemical, atmospheric and geolopical scientists working in the common area of biogeochemistry, encompassing soil and other earth sciences as weIL as the hydrosphere and atmosphere," By linking the fourth ISEB with the Leachinp Conference the scop.e of discussions was extended to encompass the application of biogeochemical processes to the mining industry. This wide-ranging philosophy is reflected in the breadth and diversity of the subjects covered in this book. The published papers are expanded versions of those presented at the meetings. They have all been scrutinized by at least one referee in addition to the editors. About 20% of the contributions to the meetings are not included, either because authors did not wish to publish or because the papers were not accepted by the editors."
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics, ' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely."
Towards the Balance and Management of the Carbon Budget of the Biosphere The current state of misunderstanding of the global C cycle and our failure to resolve an issue that has been debated for 100 years (Jones and Henderson-Sellers, 1990) speaks loudly about the limitations of modem science when faced with the complexity of the biosphere. Efforts to understand and balance the global C budget have gone through several phases. First was a holistic view of the C budget as part of efforts to understand the geochemistry of the Earth (e. g. , Clarke, 1908). Next, came a period of data collection and sythesis which focused on the diversity of sectors of the biosphere. This phase culminated in the early 1970's with the realization that humans were greatly impacting the global C cycle as measured at the Mauna Loa Observatory (Keeling et al. , 1973). New syntheses of the global C budget emerged at this time (Woodwell and Pacan, 1973; Bolin et al. , 1979). The next phase was one of controversy and intense focus on particular sectors of the biosphere. The controversy rested on discrepancies about the role of the terrestrial biota in the global C cycle and the failure to account for sufficient C sinks to absorb all the C emitted by land-use change in the tropics (Woodwell et al. , 1978, 1983; Houghton et al. , 1983).
Preface to the English edition xiii Basic notations xv Introduction xvii amPl'ER 1. Mathenatical Geology and the Developnent of Geological Sciences 1 1. 1 Introduction 1 1. 2 Developnent of geology and the change of paradigms 2 1. 3 Organization of the mediun and typical structures 8 1. 4 statement of the problem: the role of models in the search for solutions 14 1. 5 Mathematical geology and its developnent 19 References 23 amPTER II. Probability Space and Randan Variables 29 11. 1 Introduction 29 11. 2 Discrete space of elementary events 29 11. 2. 1 Probability space 30 II. 2 * 2 Randan variabl es 33 11. 3 Kolroogorov's axian; The Lebesgue integral 35 II. 3. 1 Probability space and randan variables 36 I 1. 3. 2 The Lebesgue integral 40 II. 3. 3 Nunerical characteristics of raman variables 44 II. 4 ~les of distributions of randan variables 46 II. 4. 1 Discrete distributions 46 II. 4. 2 Absolutely continuous distributions 51 II. 5 Vector randan variables 58 II. 5. 1 Product of probability spaces 58 II. 5. 2 Distribution of vector randan variables 60 II. 5. 3 Olaracteristics of vector randan variables 65 11. 5. 4 Exanples of distributions of vector raman variabl es 69 II . 5. 5 Conditional distributions with respect to randan variables 81 II. 6 Transfomations of randan variables 90 11. 6. 1 Linear transfomations 91 II. 6. 2 Sane non-linear transfomations 95 11. 6.
Engineers wishing to build structures on or in rock use the discipline known as rock mechanics. This discipline emerged as a subject in its own right about thirty five years ago, and has developed rapidly ever since. However, rock mechanics is still based to a large extent on analytical techniques that were originally formulated for the mechanical design of structures made from man made materials. The single most important distinction between man-made materials and the natural material rock is that rock contains fractures, of many kinds on many scales; and because the fractures - of whatever kin- represent breaks in the mechanical continuum, they are collectively termed 'discontinuities' . An understanding of the mechanical influence of these discontinuities is essential to all rock engineers. Most of the world is made of rock, and most of the rock near the surface is fractured. The fractures dominate the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, and even the local magnitudes and directions of the in situ stress field. Clearly, an understanding of the presence and mechanics of the discontinuities, both singly and in the rock mass context, is therefore of paramount importance to civil, mining and petroleum engineers. Bearing this in mind, it is surprising that until now there has been no book dedicated specifically to the subject of discontinuity analysis in rock engineering."
Emissions of CO2 have come to be regarded as the main factor in climate change in recent years, and how to control them has become a pressing issue. The problem cannot simply be labeled a technological one, however, because it is deeply involved with social and economic issues. Since 2008, the Global Center of Excellence (COE) program titled Energy Science in the Age of Global Warming Toward a CO2 Zero-Emission Energy System has been held at Kyoto University, Japan. The program aims to establish an international education and research platform to foster educators, researchers, and policy makers who can develop technologies and propose policies toward a zero-emission society by the year 2100. Setting out a zero-emission technology roadmap, Global COE promotes socioeconomic studies of energy, the study of new technologies for renewable energies, and research in advanced nuclear energy. A compilation of the lectures and presentations from the first symposium of Global COE held at Kyoto University, this book is intended to provide the impetus for the establishment of low carbon energy science to bring about harmony between mankind and the environment."
The Potsdam Institute for Climate Impact Research (PIK) was founded in 1992 as a "Blue List" research institute, with the Federal Ministry for Education, Science, Research and Technology and the Ministry for Science, Research and Culture of the federal state of Brandenburg each provid ing half ofthe funding. PIK currently has a staff of 100 (1997), including about 75 scientists and guest scientists, as well as a number of students and temporary assistants. Further expansion is taking place at the institute site in the "Albert Einstein" Science Park in Potsdam. The interdisciplinary nature of climate impact research, especially the interface between the natural scientific and socioeconomic dimensions of environmental research, is reflected at PIK in the close cooperation with partner institutes at national and international level. The flexible frame work created for the institute enables new problems and issues to be taken up as they arise. As a center of scientific innovation, PIK also coordinates international activities in the fields of climate impact research and Earth System analysis. The institute houses project offices for the IGBP international research programs, for example. Simulations of Global Change are performed on PIK's supercomputer using models and data drawn from various disciplines. The parallel compu ter (an IBM-SP2) boasts 20 gigaflops of computing power, making it one of the most powerful research computers in Germany. The Workshop on Cost-Benefit Analyses of Climate Change was jointly organized by PIK and the Wuppertal Institute for Energy, Climate, and Environment (WI)." Advances in Turbulence VII contains an overview of the state of turbulence research with some bias towards work done in Europe. It represents an almost complete collection of the invited and contributed papers delivered at the Seventh European Turbulence Conference, sponsored by EUROMECH and ERCOFTAC and organized by the Observatoire de la Cote d'Azur. New high-Reynolds number experiments combined with new techniques of imaging, non-intrusive probing, processing and simulation provide high-quality data which put significant constraints on possible theories. For the first time, it has been shown, for a class of passive scalar problems, why dimensional analysis sometimes gives the wrong answers and how anomalous intermittency corrections can be calculated from first principles. The volume is thus geared towards specialists in the area of flow turbulence who could not attend the conference as well as anybody interested in this rapidly moving field.
A variety of ceramic materials has been recently shown to exhibit nonlinear stress strain behavior. These materials include transformation-toughened zirconia which undergoes a stress-induced crystallographic transformation in the vicinity of a propagating crack, microcracking ceramics, and ceramic-fiber reinforced ceramic matrices. Since many of these materials are under consideration for structural applications, understanding fracture in these quasi-brittle materials is essential. Portland cement concrete is a relatively brittle material. As a result mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete and fiber reinforced concrete is critically influenced by crack propagation. Crack propagation in concrete is characterized by a fracture process zone, microcracking, and aggregate bridging. Such phenomena give concrete toughening mechanisms, and as a result, the macroscopic response of concrete can be characterized as that of a quasi-brittle material. To design super high performance cement composites, it is essential to understand the complex fracture processes in concrete. A wide range of concern in design involves fracture in rock masses and rock structures. For example, prediction of the extension or initiation of fracture is important in: 1) the design of caverns (such as underground nuclear waste isolation) subjected to earthquake shaking or explosions, 2) the production of geothermal and petroleum energy, and 3) predicting and monitoring earthquakes. Depending upon the grain size and mineralogical composition, rock may also exhibit characteristics of quasi-brittle materials."
The second of the 1989 conferences in the Shell Conference Series, held from 10 to 12 December in the Netherlands and organized by Koninklijke/Shell-Laboratorium, Amsterdam, was on "Computational Fluid Dynamics for Petrochemical Process Equip ment". The objective was to generate a shared perspective on the subject with respect to its role in the design of equipment involving complex flows. The conference was attended by scientists from four Shell laboratories and experts from universities in the USA, France, Great Britain, Germany and The Netherlands. R. V. A. Oliemans, G. Ooms and T. M. M. Verheggen formed the organizing committee. Complexities in fluid flow may arise from equipment geometry and/or the fluids themselves, which can be mUlti-component, single-phase or multiphase. Pressure and temperature gradients and any reactivity of components in the flow stream can be additional factors. Four themes were addressed: turbulent reacting and non-reacting flow, dispersed multiphase flow, separated two-phase flow and fluid flow simulation tools. The capabilities and limitations of a sequence of turbulence flow models, from the relatively simple k-GBP model to direct numerical simulation and large eddy turbulence flow models, were considered for a range of petrochemical process equipment. Flow stability aspects and the potential of cellular automata for the simulation of industrial flows also received attention. The papers published in this special issue of Applied Scientific Research provide a fair representation of the Computational Fluid Dynamics topics discussed in the context of their application to petrochemical process equipment.
This book is the outcome of the work of contributors who participated in the wo- shop "Mapping Different Geographies (MDG)" in February 2010, held in Puchberg am Schneeberg, Austria. This meeting brought together cartographers, artists and geoscientists who research and practice in applications that focus on enhancing o- to-one communication or develop and evaluate methodologies that provide inno- tive methods for sharing information. The main intention of the workshop was to investigate how 'different' geographies are being mapped and the possibilities for developing new theories and techniques for information design and transfer based on place or location. So as to communicate these concepts it was important to appreciate the many contrasting meanings of 'mapping' that were held by workshop participants. Also, the many (and varied) viewpoints of what different geographies are, were ela- rated upon and discussed. Therefore, as the focus on space and time was embedded within everyone's felds of investigation, this was addressed during the workshop. This resulted in very engaging discourse, which, in some cases, exposed the restrictions that certain approaches need to consider. For participants, this proved to be most useful, as this allowed them to appreciate the limits and restrictions of their own approach to understanding and representing different geographies. As well, the workshop also was most helpful as a vehicle for demonstrating the common ground of interest held by the very diverse areas of endeavour that the workshop participants work within. |
You may like...
Effective Prototyping with Excel - A…
Nevin Berger, Michael Arent, …
Paperback
R1,134
Discovery Miles 11 340
Frequency Analyses of Natural Extreme…
Jose A. Raynal-Villasenor
Hardcover
R3,848
Discovery Miles 38 480
|