![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubedat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Muller R. Rhodes D. Roessler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.
Celebrating one of the leading figures in contemporary number theory - John H. Coates - on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.
This collection of course notes from a number theory summer school focus on aspects of Diophantine Analysis, addressed to Master and doctoral students as well as everyone who wants to learn the subject. The topics range from Baker's method of bounding linear forms in logarithms (authored by Sanda Bujacic and Alan Filipin), metric diophantine approximation discussing in particular the yet unsolved Littlewood conjecture (by Simon Kristensen), Minkowski's geometry of numbers and modern variations by Bombieri and Schmidt (Tapani Matala-aho), and a historical account of related number theory(ists) at the turn of the 19th Century (Nicola M.R. Oswald). Each of these notes serves as an essentially self-contained introduction to the topic. The reader gets a thorough impression of Diophantine Analysis by its central results, relevant applications and open problems. The notes are complemented with many references and an extensive register which makes it easy to navigate through the book.
This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.
This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems.Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.
Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number theory, including full proofs of Dirichlet's Theorem and the Prime Number Theorem Concise treatment of algebraic number theory, including a complete presentation of primes, prime factorizations in algebraic number fields, and unique factorization of ideals Discussion of the AKS algorithm, which shows that primality testing is one of polynomial time, a topic not usually included in such texts Many interesting ancillary topics, such as primality testing and cryptography, Fermat and Mersenne numbers, and Carmichael numbers The user-friendly style, historical context, and wide range of exercises that range from simple to quite difficult (with solutions and hints provided for select exercises) make Number Theory: An Introduction via the Density of Primes ideal for both self-study and classroom use. Intended for upper level undergraduates and beginning graduates, the only prerequisites are a basic knowledge of calculus, multivariable calculus, and some linear algebra. All necessary concepts from abstract algebra and complex analysis are introduced where needed.
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women in number theory, to train junior participants about topics of current importance, and to continue to build a vibrant community of women in number theory. Forty-two women attended the WIN3 workshop, including 15 senior and mid-level faculty, 15 junior faculty and postdocs, and 12 graduate students.
This book constitutes the refereed post-conference proceedings of the First International Conference on Number-Theoretic Methods in Cryptology, NuTMiC 2017, held in Warsaw, Poland, in September 2017.The 15 revised full papers presented in this book together with 3 invited talks were carefully reviewed and selected from 32 initial submissions. The papers are organized in topical sections on elliptic curves in cryptography; public-key cryptography; lattices in cryptography; number theory; pseudorandomness; and algebraic structures and analysis.
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22-26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prufer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
This is a self-contained exposition by one of the leading experts in lattice theory, George Gratzer, presenting the major results of the last 70 years on congruence lattices of finite lattices, featuring the author's signature Proof-by-Picture method. Key features: * Insightful discussion of techniques to construct "nice" finite lattices with given congruence lattices and "nice" congruence-preserving extensions * Contains complete proofs, an extensive bibliography and index, and over 140 illustrations * This new edition includes two new parts on Planar Semimodular Lattices and The Order of Principle Congruences, covering the research of the last 10 years The book is appropriate for a one-semester graduate course in lattice theory, and it is a practical reference for researchers studying lattices. Reviews of the first edition: "There exist a lot of interesting results in this area of lattice theory, and some of them are presented in this book. [This] monograph...is an exceptional work in lattice theory, like all the contributions by this author. ... The way this book is written makes it extremely interesting for the specialists in the field but also for the students in lattice theory. Moreover, the author provides a series of companion lectures which help the reader to approach the Proof-by-Picture sections." (Cosmin Pelea, Studia Universitatis Babes-Bolyai Mathematica, Vol. LII (1), 2007) "The book is self-contained, with many detailed proofs presented that can be followed step-by-step. [I]n addition to giving the full formal details of the proofs, the author chooses a somehow more pedagogical way that he calls Proof-by-Picture, somehow related to the combinatorial (as opposed to algebraic) nature of many of the presented results. I believe that this book is a much-needed tool for any mathematician wishing a gentle introduction to the field of congruences representations of finite lattices, with emphasis on the more 'geometric' aspects." -Mathematical Reviews
Featuring the clearly presented and expertly-refereed contributions of leading researchers in the field of approximation theory, this volume is a collection of the best contributions at the Third International Conference on Applied Mathematics and Approximation Theory, an international conference held at TOBB University of Economics and Technology in Ankara, Turkey, on May 28-31, 2015. The goal of the conference, and this volume, is to bring together key work from researchers in all areas of approximation theory, covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. These topics are presented both within their traditional context of approximation theory, while also focusing on their connections to applied mathematics. As a result, this collection will be an invaluable resource for researchers in applied mathematics, engineering and statistics.
This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a workshop in connection with the research project Thales on Algebraic Modeling of Topological and Computational Structures and Applications, held at the National Technical University of Athens, Greece in July 2015. The reader will benefit from the innovative approaches to tackling difficult questions in topology, applications and interrelated research areas, which largely employ algebraic tools.
This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy's research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
This monograph provides an accessible and comprehensive introduction to James Arthur's invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur's research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur's work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur's proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G' = GL(n) and its inner form G< and for functions with matching orbital integrals. Arthur's Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory.
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincare Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant +/-1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.
This book develops the foundations of "summability calculus", which is a comprehensive theory of fractional finite sums. It fills an important gap in the literature by unifying and extending disparate historical results. It also presents new material that has not been published before. Importantly, it shows how the study of fractional finite sums benefits from and contributes to many areas of mathematics, such as divergent series, numerical integration, approximation theory, asymptotic methods, special functions, series acceleration, Fourier analysis, the calculus of finite differences, and information theory. As such, it appeals to a wide audience of mathematicians whose interests include the study of special functions, summability theory, analytic number theory, series and sequences, approximation theory, asymptotic expansions, or numerical methods. Richly illustrated, it features chapter summaries, and includes numerous examples and exercises. The content is mostly developed from scratch using only undergraduate mathematics, such as calculus and linear algebra.
This textbook offers an invitation to modern algebra through number systems of increasing complexity, beginning with the natural numbers and culminating with Hamilton's quaternions. Along the way, the authors carefully develop the necessary concepts and methods from abstract algebra: monoids, groups, rings, fields, and skew fields. Each chapter ends with an appendix discussing related topics from algebra and number theory, including recent developments reflecting the relevance of the material to current research. The present volume is intended for undergraduate courses in abstract algebra or elementary number theory. The inclusion of exercises with solutions also makes it suitable for self-study and accessible to anyone with an interest in modern algebra and number theory.
The aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical evaluation, a formula in terms of convergent series is provided by the use of Newton interpolation. The relation with other summation processes such as those of Borel and Euler is also studied. Finally, in the last chapter, a purely algebraic theory is developed that unifies all these summation processes. This monograph is aimed at graduate students and researchers who have a basic knowledge of analytic function theory.
This book is a survey of the most important directions of research in transcendental number theory. For readers with no specific background in transcendental number theory, the book provides both an overview of the basic concepts and techniques and also a guide to the most important results and references.
"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."- MATHEMATICAL REVIEWS
This edition has been called startlingly up-to-date, and in this corrected second printing you can be sure that it 's even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.
This is a new annotated edition of Thomas J. Stieltjes' Collected Papers, first published in 1914 (Vol. I) and 1918 (Vol. II) by Noordhoff, Groningen, in French, and now published by Springer-Verlag, originally to mark the occasion of the 100th anniversary of Stieltjes' death (1894). These two volumes will be of great interest to all mathematicians who are anxious to understand the impact of Stieltjes' work on modern mathematics, and in particular on the theory of orthogonal polynomials and continued fractions. In addition to the reproduction of Stieltjes' papers (I-XLVII), Volume I includes about 75 pages of commentaries by contemporary mathematicians on Stieltjes' work. Volume II contains Stieltjes' papers XLVIII-LXXXIV together with English translations of his main paper "Recherches sur les fractions continues" and his short note regarding the Riemann hypothesis. A Bibliography of Stieltjes' papers is included in both volumes for the convenience of the reader.
This is a new annotated edition of Thomas J. Stieltjes' Collected Papers, first published in 1914 (Vol. I) and 1918 (Vol. II) by Noordhoff, Groningen, in French, and now published by Springer-Verlag, originally to mark the occasion of the 100th anniversary of Stieltjes' death (1894). These two volumes will be of great interest to all mathematicians who are anxious to understand the impact of Stieltjes' work on modern mathematics, and in particular on the theory of orthogonal polynomials and continued fractions. In addition to the reproduction of Stieltjes' papers (I-XLVII), Volume I includes about 75 pages of commentaries by contemporary mathematicians on Stieltjes' work. Volume II contains Stieltjes' papers XLVIII-LXXXIV together with English translations of his main paper "Recherches sur les fractions continues" and his short note regarding the Riemann hypothesis. A Bibliography of Stieltjes' papers is included in both volumes for the convenience of the reader.
Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems. This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas. As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers. |
You may like...
Borel's Methods of Summability - Theory…
Bruce L.R. Shawyer, Bruce Watson
Hardcover
R2,770
Discovery Miles 27 700
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun
Hardcover
R4,104
Discovery Miles 41 040
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Nevanlinna Theory in Several Complex…
Junjiro Noguchi, Joerg Winkelmann
Hardcover
R3,866
Discovery Miles 38 660
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
|