![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This volume is a systematic treatment of the additive number theory of polynomials over a finite field, an area possessing deep and fascinating parallels with classical number theory. In providing asymptomatic proofs of both the Polynomial Three Primes Problem (an analog of Vinogradov's theorem) and the Polynomial Waring Problem, the book develops the various tools necessary to apply an adelic "circle method" to a wide variety of additive problems in both the polynomial and classical settings. A key to the methods employed here is that the generalized Riemann hypothesis is valid in this polynomial setting. The authors presuppose a familiarity with algebra and number theory as might be gained from the first two years of graduate course, but otherwise the book is self-contained. Starting with analysis on local fields, the main technical results are all proved in detail so that there are extensive discussions of the theory of characters in a non-Archimidean field, adele class groups, the global singular series and Radon-Nikodyn derivatives, L-functions of Dirichlet type, and K-ideles.
This book is mostly based on the author's 25 years of teaching combinatorics to two distinct sets of students: first-year students and seniors from all backgrounds, not just limited to only those majoring in mathematics and physics. The prerequisites are kept to a minimum; essentially, only high school algebra is required. The design is to go from zero knowledge to advanced themes and various applications during a semester of three or three and a half months with quite a few topics intended for research projects and additional reading.This unique book features the key themes of classical introductory combinatorics, modeling (mainly linear), and elementary number theory with a constant focus on applications in statistics, physics, biology, economics, and computer science. These applications include dimers, random walks, binomial and Poisson distributions, games of chance (lottery, dice, poker, roulette), pricing options, population growth, tree growth, modeling epidemic spread, invasion ecology, fission reactors, and networks.A lot of material is provided in the form of relatively self-contained problems, about 135, and exercises, about 270, which are almost always with hints and answers. A systematic introduction to number theory (with complete justifications) is a significant part of the book, including finite fields, Pell's equations, continued fractions, quadratic reciprocity, the Frobenius coin problem, Pisano periods, applications to magic and Latin squares and elements of cryptography. The recurrence relations and modeling play a very significant role, including the usage of Bessel functions for motivated readers. The book contains a lot of history of mathematics and recreational mathematics.
This book provides a conceptual introduction into the representation theory of local and global groups, with final emphasis on automorphic representations of reductive groups G over number fields F.Our approach to automorphic representations differs from the usual literature: We do not consider 'K-finite' automorphic forms, but we allow a richer class of smooth functions of uniform moderate growth. Contrasting the usual approach, our space of 'smooth-automorphic forms' is intrinsic to the group scheme G/F.This setup also covers the advantage that a perfect representation-theoretical symmetry between the archimedean and non-archimedean places of the number field F is regained, by making the bigger space of smooth-automorphic forms into a proper, continuous representation of the full group of adelic points of G.Graduate students and researchers will find the covered topics appear for the first time in a book, where the theory of smooth-automorphic representations is robustly developed and presented in great detail.
Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers) and gives much of their properties, facts and theorems with full proofs of them, as well as their numerous analogue and generalizations.
In this monograph, we study recent results on some categories of trigonometric/exponential sums along with various of their applications in Mathematical Analysis and Analytic Number Theory. Through the two chapters of this monograph, we wish to highlight the applicability and breadth of techniques of trigonometric/exponential sums in various problems focusing on the interplay of Mathematical Analysis and Analytic Number Theory. We wish to stress the point that the goal is not only to prove the desired results, but also to present a plethora of intermediate Propositions and Corollaries investigating the behaviour of such sums, which can also be applied in completely different problems and settings than the ones treated within this monograph.In the present work we mainly focus on the applications of trigonometric/exponential sums in the study of Ramanujan sums - which constitute a very classical domain of research in Number Theory - as well as the study of certain cotangent sums with a wide range of applications, especially in the study of Dedekind sums and a facet of the research conducted on the Riemann Hypothesis. For example, in our study of the cotangent sums treated within the second chapter, the methods and techniques employed reveal unexpected connections with independent and very interesting problems investigated in the past by R de la Breteche and G Tenenbaum on trigonometric series, as well as by S Marmi, P Moussa and J-C Yoccoz on Dynamical Systems.Overall, a reader who has mastered fundamentals of Mathematical Analysis, as well as having a working knowledge of Classical and Analytic Number Theory, will be able to gradually follow all the parts of the monograph. Therefore, the present monograph will be of interest to advanced undergraduate and graduate students as well as researchers who wish to be informed on the latest developments on the topics treated.
The guiding principle in this monograph is to develop a new theory of modular forms which encompasses most of the available theory of modular forms in the literature, such as those for congruence groups, Siegel and Hilbert modular forms, many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau modular forms, with its examples such as Yukawa couplings and topological string partition functions, and even go beyond all these cases. Its main ingredient is the so-called 'Gauss-Manin connection in disguise'.
This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry.Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation.The fundamentals in the first five chapters are as follows:Many open problems are presented to stimulate young researchers pursuing their field of study.
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject.
Congruences are ubiquitous in computer science, engineering, mathematics, and related areas. Developing techniques for finding (the number of) solutions of congruences is an important problem. But there are many scenarios in which we are interested in only a subset of the solutions; in other words, there are some restrictions. What do we know about these restricted congruences, their solutions, and applications? This book introduces the tools that are needed when working on restricted congruences and then systematically studies a variety of restricted congruences. Restricted Congruences in Computing defines several types of restricted congruence, obtains explicit formulae for the number of their solutions using a wide range of tools and techniques, and discusses their applications in cryptography, information security, information theory, coding theory, string theory, quantum field theory, parallel computing, artificial intelligence, computational biology, discrete mathematics, number theory, and more. This is the first book devoted to restricted congruences and their applications. It will be of interest to graduate students and researchers across computer science, electrical engineering, and mathematics.
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
In this enjoyable and lightheaded volume, he gathers a plethora of cultural, biological, geometrical, algebraic, and planetary phenomena of our lives related to the number five. He investigates these occurrences in various facets of life on earth and seeks plausible explanations for some of them and hypothesizes about some others while widening your horizon.
A magician appears able to banish chaos at will: a deck of cards arranged in order is shuffled--apparently randomly--by a member of the audience. Then, hey presto! The deck is suddenly put back in its original order! Magic tricks like this are easy to perform and have an interesting mathematical foundation. In this rich, colorfully illustrated volume, Ehrhard Behrends presents around 30 card tricks and number games that are easy to learn, with no prior knowledge required. This is math as you've never experienced it before: entertaining and fun!
This is the second of a two-volume series on sampling theory. The mathematical foundations were laid in the first volume, and this book surveys the many applications of sampling theory both within mathematics and in other areas of science. Many of the topics covered here are not found in other books, and all are given an up to date treatment bringing the reader's knowledge up to research level. This book consists of ten chapters, written by ten different teams of authors, and the contents range over a wide variety of topics including combinatorial analysis, number theory, neural networks, derivative sampling, wavelets, stochastic signals, random fields, and abstract harmonic analysis. There is a comprehensive, up to date bibliography.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.
Over a career that spanned 60 years, Ronald L. Graham (known to all as Ron) made significant contributions to the fields of discrete mathematics, number theory, Ramsey theory, computational geometry, juggling and magical mathematics, and many more. Ron also was a mentor to generations of mathematicians, he gave countless talks and helped bring mathematics to a wider audience, and he held signifi cant leadership roles in the mathematical community. This volume is dedicated to the life and memory of Ron Graham, and includes 20-articles by leading scientists across a broad range of subjects that refl ect some of the many areas in which Ron worked.
Multidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area.
This is the first extensive biography of the influential German mathematician, Peter Gustav Lejeune Dirichlet (1805 - 1859). Dirichlet made major contributions to number theory in addition to clarifying concepts such as the representation of functions as series, the theory of convergence, and potential theory. His mathematical methodology was explicitly based on a thorough knowledge of the work of his predecessors and his belief in the underlying unity of the branches of mathematics. This unified approach is exemplified in a paper that effectively launched the field of analytic number theory. The same orientation pervaded his teaching, which had a profound influence on the work of many mathematicians of subsequent generations. Chapters dealing with his mathematical work alternate with biographical chapters that place Dirichlet's life and those of some of his notable associates in the context of the political, social, and artistic culture of the period. This book will appeal not only to mathematicians but also to historians of mathematics and sciences, and readers interested in the cultural and intellectual history of the nineteenth century.
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.
This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry. Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research. These areas are interrelated with various other mathematical fields such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics. Keeping up with the fast development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura (Kyushu University) launched a series of seminars on the topic, the first of which took place on November 2009 in Kerkennah Islands, the second in Sousse on December 2011, and the third in Hammamet on December 2013. The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaboration of many teams in several corners. Many experts from both countries have been involved. |
You may like...
Continued Fractions with Applications…
L. Lorentzen, H. Waadeland
Hardcover
R1,386
Discovery Miles 13 860
Combinatorial Game Theory - A Special…
Richard J. Nowakowski, Bruce M. Landman, …
Hardcover
R5,739
Discovery Miles 57 390
Borel's Methods of Summability - Theory…
Bruce L.R. Shawyer, Bruce Watson
Hardcover
R2,770
Discovery Miles 27 700
Algebraic Geometry and Number Theory…
Hussein Mourtada, Celal Cem Sarioglu, …
Hardcover
Basic Modern Algebra with Applications
Mahima Ranjan Adhikari, Avishek Adhikari
Hardcover
R2,552
Discovery Miles 25 520
|