![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
The first edition of this book provided the first systematic exposition of the arithmetic theory of algebraic groups. This revised second edition, now published in two volumes, retains the same goals, while incorporating corrections and improvements, as well as new material covering more recent developments. Volume I begins with chapters covering background material on number theory, algebraic groups, and cohomology (both abelian and non-abelian), and then turns to algebraic groups over locally compact fields. The remaining two chapters provide a detailed treatment of arithmetic subgroups and reduction theory in both the real and adelic settings. Volume I includes new material on groups with bounded generation and abstract arithmetic groups. With minimal prerequisites and complete proofs given whenever possible, this book is suitable for self-study for graduate students wishing to learn the subject as well as a reference for researchers in number theory, algebraic geometry, and related areas.
Key problems and conjectures have played an important role in promoting the development of Ramsey theory, a field where great progress has been made during the past two decades, with some old problems solved and many new problems proposed. The present book will be helpful to readers who wish to learn about interesting problems in Ramsey theory, to see how they are interconnected, and then to study them in depth. This book is the first problem book of such scope in Ramsey theory. Many unsolved problems, conjectures and related partial results in Ramsey theory are presented, in areas such as extremal graph theory, additive number theory, discrete geometry, functional analysis, algorithm design, and in other areas. Most presented problems are easy to understand, but they may be difficult to solve. They can be appreciated on many levels and by a wide readership, ranging from undergraduate students majoring in mathematics to research mathematicians. This collection is an essential reference for mathematicians working in combinatorics and number theory, as well as for computer scientists studying algorithms. Contents Some definitions and notations Ramsey theory Bi-color diagonal classical Ramsey numbers Paley graphs and lower bounds for R(k, k) Bi-color off-diagonal classical Ramsey numbers Multicolor classical Ramsey numbers Generalized Ramsey numbers Folkman numbers The Erdos-Hajnal conjecture Other Ramsey-type problems in graph theory On van der Waerden numbers and Szemeredi's theorem More problems of Ramsey type in additive number theory Sidon-Ramsey numbers Games in Ramsey theory Local Ramsey theory Set-coloring Ramsey theory Other problems and conjectures
Number Theory and its Applications is a textbook for students pursuing mathematics as major in undergraduate and postgraduate courses. Please note: Taylor & Francis does not sell or distribute the print book in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Based on the successful 7th China-Japan seminar on number theory conducted in Kyushu University, this volume is a compilation of survey and semi-survey type of papers by the participants of the seminar. The topics covered range from traditional analytic number theory to elliptic curves and universality. This volume contains new developments in the field of number theory from recent years and it provides suitable problems for possible new research at a level which is not unattainable. Timely surveys will be beneficial to a new generation of researchers as a source of information and these provide a glimpse at the state-of-the-art affairs in the fields of their research interests.
Features Uses techniques from widely diverse areas of mathematics, including number theory, calculus, set theory, complex analysis, linear algebra, and the theory of computation. Suitable as a primary textbook for advanced undergraduate courses in number theory, or as supplementary reading for interested postgraduates. Each chapter concludes with an appendix setting out the basic facts needed from each topic, so that the book is accessible to readers without any specific specialist background.
This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.
This volume consists of a selection of research-type articles on dynamical systems, evolution equations, analytic number theory and closely related topics. A strong emphasis is on a fair balance between theoretical and more applied work, thus spanning the chasm between abstract insight and actual application. Several of the articles are expected to be in the intersection of dynamical systems theory and number theory. One article will likely relate the topics presented to the academic achievements and interests of Prof. Leutbecher and shed light on common threads among all the contributions.
In recent years, extensive research has been conducted by eminent mathematicians and engineers whose results and proposed problems are presented in this new volume. It is addressed to graduate students, research mathematicians, physicists, and engineers. Individual contributions are devoted to topics of approximation theory, functional equations and inequalities, fixed point theory, numerical analysis, theory of wavelets, convex analysis, topology, operator theory, differential operators, fractional integral operators, integro-differential equations, ternary algebras, super and hyper relators, variational analysis, discrete mathematics, cryptography, and a variety of applications in interdisciplinary topics. Several of these domains have a strong connection with both theories and problems of linear and nonlinear optimization. The combination of results from various domains provides the reader with a solid, state-of-the-art interdisciplinary reference to theory and problems. Some of the works provide guidelines for further research and proposals for new directions and open problems with relevant discussions.
Prime Numbers, Friends Who Give Problems is written as a trialogue, with two persons who are interested in prime numbers asking the author, Papa Paulo, intelligent questions. Starting at a very elementary level, the book advances steadily, covering all important topics of the theory of prime numbers, up to the most famous problems. The humorous conversations and the inclusion of a back-story add to the uniqueness of the book. Concepts and results are also explained with great care, making the book accessible to a wide audience.
Prime Numbers, Friends Who Give Problems is written as a trialogue, with two persons who are interested in prime numbers asking the author, Papa Paulo, intelligent questions. Starting at a very elementary level, the book advances steadily, covering all important topics of the theory of prime numbers, up to the most famous problems. The humorous conversations and the inclusion of a back-story add to the uniqueness of the book. Concepts and results are also explained with great care, making the book accessible to a wide audience.
The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat's last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
'Probably its most significant distinguishing feature is that this book is more algebraically oriented than most undergraduate number theory texts.'MAA ReviewsIntroduction to Number Theory is dedicated to concrete questions about integers, to place an emphasis on problem solving by students. When undertaking a first course in number theory, students enjoy actively engaging with the properties and relationships of numbers.The book begins with introductory material, including uniqueness of factorization of integers and polynomials. Subsequent topics explore quadratic reciprocity, Hensel's Lemma, p-adic powers series such as exp(px) and log(1+px), the Euclidean property of some quadratic rings, representation of integers as norms from quadratic rings, and Pell's equation via continued fractions.Throughout the five chapters and more than 100 exercises and solutions, readers gain the advantage of a number theory book that focuses on doing calculations. This textbook is a valuable resource for undergraduates or those with a background in university level mathematics.
Introduces a new web-based optimizer for Geometric algebra algorithms; Supports many programming languages as well as hardware; Covers the advantages of High-dimensional algebras; Includes geometrically intuitive support of quantum computing
This book contains selected chapters on perfectoid spaces, their introduction and applications, as invented by Peter Scholze in his Fields Medal winning work. These contributions are presented at the conference on "Perfectoid Spaces" held at the International Centre for Theoretical Sciences, Bengaluru, India, from 9-20 September 2019. The objective of the book is to give an advanced introduction to Scholze's theory and understand the relation between perfectoid spaces and some aspects of arithmetic of modular (or, more generally, automorphic) forms such as representations mod p, lifting of modular forms, completed cohomology, local Langlands program, and special values of L-functions. All chapters are contributed by experts in the area of arithmetic geometry that will facilitate future research in the direction.
Elementary Number Theory, Gove Effinger, Gary L. Mullen This text is intended to be used as an undergraduate introduction to the theory of numbers. The authors have been immersed in this area of mathematics for many years and hope that this text will inspire students (and instructors) to study, understand, and come to love this truly beautiful subject. Each chapter, after an introduction, develops a new topic clearly broken out in sections which include theoretical material together with numerous examples, each worked out in considerable detail. At the end of each chapter, after a summary of the topic, there are a number of solved problems, also worked out in detail, followed by a set of supplementary problems. These latter problems give students a chance to test their own understanding of the material; solutions to some but not all of them complete the chapter. The first eight chapters discuss some standard material in elementary number theory. The remaining chapters discuss topics which might be considered a bit more advanced. The text closes with a chapter on Open Problems in Number Theory. Students (and of course instructors) are strongly encouraged to study this chapter carefully and fully realize that not all mathematical issues and problems have been resolved! There is still much to be learned and many questions to be answered in mathematics in general and in number theory in particular.
Elementary Number Theory, Gove Effinger, Gary L. Mullen This text is intended to be used as an undergraduate introduction to the theory of numbers. The authors have been immersed in this area of mathematics for many years and hope that this text will inspire students (and instructors) to study, understand, and come to love this truly beautiful subject. Each chapter, after an introduction, develops a new topic clearly broken out in sections which include theoretical material together with numerous examples, each worked out in considerable detail. At the end of each chapter, after a summary of the topic, there are a number of solved problems, also worked out in detail, followed by a set of supplementary problems. These latter problems give students a chance to test their own understanding of the material; solutions to some but not all of them complete the chapter. The first eight chapters discuss some standard material in elementary number theory. The remaining chapters discuss topics which might be considered a bit more advanced. The text closes with a chapter on Open Problems in Number Theory. Students (and of course instructors) are strongly encouraged to study this chapter carefully and fully realize that not all mathematical issues and problems have been resolved! There is still much to be learned and many questions to be answered in mathematics in general and in number theory in particular.
This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems.
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number theory and a review of the prerequisite material, then presents the basic theory of algebraic numbers. The treatment of the subject is classical but the newer approach discussed at the end provides a broader theory to include the arithmetic of algebraic curves over finite fields, and even suggests a theory for studying higher dimensional varieties over finite fields. It leads naturally to the Weil conjecture and some delicate questions in algebraic geometry. About the Author Dr. J. S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published several papers in number theory. For hobbies, he likes to travel and hike. His book, Fundamentals of Linear Algebra, is also published by CRC Press.
Written for graduate students and researchers alike, this set of lectures provides a structured introduction to the concept of equidistribution in number theory. This concept is of growing importance in many areas, including cryptography, zeros of L-functions, Heegner points, prime number theory, the theory of quadratic forms, and the arithmetic aspects of quantum chaos. The volume brings together leading researchers from a range of fields, whose accessible presentations reveal fascinating links between seemingly disparate areas."
This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces. Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject. These proceedings reflect the topics of the lectures presented during the workshop 'Beauville surfaces and groups 2012', held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.
This volume is an outgrowth of the program Modular Representation Theory of Finite and p-Adic Groups held at the Institute for Mathematical Sciences at National University of Singapore during the period of 1-26 April 2013. It contains research works in the areas of modular representation theory of p-adic groups and finite groups and their related algebras. The aim of this volume is to provide a bridge - where interactions are rare between researchers from these two areas - by highlighting the latest developments, suggesting potential new research problems, and promoting new collaborations.It is perhaps one of the few volumes, if not only, which treats such a juxtaposition of diverse topics, emphasizing their common core at the heart of Lie theory.
The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume. |
![]() ![]() You may like...
Efficient and Provably Secure Schemes…
Ikram Ali, Yong Chen, …
Hardcover
R4,239
Discovery Miles 42 390
Human Factors in Safety-Critical Systems
Felix Redmill, Jane Rajan
Hardcover
R3,678
Discovery Miles 36 780
Applied Cryptography for Cyber Security…
Hamid R. Nemati, Yang Li
Hardcover
R4,993
Discovery Miles 49 930
Cryptographic Boolean Functions and…
Thomas W Cusick, Pantelimon Stanica
Paperback
R2,037
Discovery Miles 20 370
Cybersecurity, Privacy and Freedom…
Hamid Jahankhani, Arshad Jamal, …
Hardcover
R1,607
Discovery Miles 16 070
Partially Homomorphic Encryption
Cetin Kaya Koc, Funda OEzdemir, …
Hardcover
R3,602
Discovery Miles 36 020
|