![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression. The materials in this book are based on A Hidebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.
This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brasov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few. "
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
This volume aims to present a straightforward and easily accessible survey of the analytic theory of quadratic forms. Written at an elementary level, the book provides a sound basis from which the reader can study advanced works and undertake original research. Roughly half a century ago C.L. Siegel discovered a new type of automorphic forms in several variables in connection with his famous work on the analytic theory of quadratic forms. Since then Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the recent arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The text is based on the author's lectures given over a number of years and is intended for a one semester graduate course, although it can serve equally well for self study . The only prerequisites are a knowledge of algebra, number theory and complex analysis.
"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."
Digital Signal Processing Algorithms describes computational number theory and its applications to deriving fast algorithms for digital signal processing. It demonstrates the importance of computational number theory in the design of digital signal processing algorithms and clearly describes the nature and structure of the algorithms themselves. The book has two primary focuses: first, it establishes the properties of discrete-time sequence indices and their corresponding fast algorithms; and second, it investigates the properties of the discrete-time sequences and the corresponding fast algorithms for processing these sequences.
Presents a systematic study of the common zeros of polynomials in several variables which are related to higher dimensional quadrature. The author uses a new approach which is based on the recent development of orthogonal polynomials in several variables and differs significantly from the previous ones based on algebraic ideal theory. Featuring a great deal of new work, new theorems and, in many cases, new proofs, this self-contained work will be of great interest to researchers in numerical analysis, the theory of orthogonal polynomials and related subjects.
This is an examination of number theory as it emerged in the 17th through to the 19th century, leading to an understanding of today's research problems on the basis of their historical evolution. The book introduces the reader to the mathematicians Fermat, Euler, Lagrange, Legendre and Gauss. It goes on to tackle advanced themes in this field, often dubbed the queen of mathematics.
Giving an easily accessible elementary introduction to the
algebraic theory of quadratic forms, this book covers both Witt's
theory and Pfister's theory of quadratic forms.
This text aims to bridge the gap between non-mathematical popular treatments and the distinctly mathematical publications that non- mathematicians find so difficult to penetrate. The author provides understandable derivations or explanations of many key concepts, such as Kolmogrov-Sinai entropy, dimensions, Fourier analysis, and Lyapunov exponents. Only basic algebra, trigonometry, geometry and statistics are assumed as background. The author focuses on the most important topics, very much with the general scientist in mind.
This text provides a detailed introduction to number theory, demonstrating how other areas of mathematics enter into the study of the properties of natural numbers. It contains problem sets within each section and at the end of each chapter to reinforce essential concepts, and includes up-to-date information on divisibility problems, polynomial congruence, the sums of squares and trigonometric sums.;Five or more copies may be ordered by college or university bookstores at a special price, available on application.
The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).
The first thing you will find out about this book is that it is fun to read. It is meant for the browser, as well as for the student and for the specialist wanting to know about the area. The footnotes give an historical background to the text, in addition to providing deeper applications of the concept that is being cited. This allows the browser to look more deeply into the history or to pursue a given sideline. Those who are only marginally interested in the area will be able to read the text, pick up information easily, and be entertained at the same time by the historical and philosophical digressions. It is rich in structure and motivation in its concentration upon quadratic orders.
This book is a collection of research papers and surveys on algebra that were presented at the Conference on Groups, Rings, and Group Rings held in Ubatuba, Brazil. This text familiarizes researchers with the latest topics, techniques, and methodologies in several branches of contemporary algebra. With extensive coverage, it examines broad themes from group theory and ring theory, exploring their relationship with other branches of algebra including actions of Hopf algebras, groups of units of group rings, combinatorics of Young diagrams, polynomial identities, growth of algebras, and more. Featuring international contributions, this book is ideal for mathematicians specializing in these areas.
This proceedings volume convenes selected, peer-reviewed papers presented at the 3rd International Conference on Mathematics and its Applications in Science and Engineering - ICMASE 2022, which was held on July 4-7, 2022 by the Technical University of Civil Engineering of Bucharest, Romania. Works in this volume cover new developments in applications of mathematics in science and engineering, with emphasis on mathematical and computational modeling of real-world problems. Topics range from the use of differential equations to model mechanical structures to the employ of number theory in the development of information security and cryptography. Educational issues specific to the acquisition of mathematical competencies by engineering and science students at all university levels are also touched on. Researchers and university students are the natural audiences for this book, which can be equally appealing to practitioners seeking up-to-date techniques in mathematical applications to different contexts and disciplines.
Bridging the gap between elementary number theory and the systematic study of advanced topics, A Classical Introduction to Modern Number Theory is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical development is stressed throughout, along with wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. An extensive bibliography and many challenging exercises are also included. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordell-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves.
This book is an introduction to the theory of algebraic numbers and algebraic functions of one variable. The basic development is the same for both using E Artin's legant approach, via valuations. Number Theory is pursued as far as the unit theorem and the finiteness of the class number. In function theory the aim is the Abel-Jacobi theorem describing the devisor class group, with occasional geometrical asides to help understanding. Assuming only an undergraduate course in algebra, plus a little acquaintance with topology and complex function theory, the book serves as an introduction to more technical works in algebraic number theory, function theory or algebraic geometry by an exposition of the central themes in the subject.
Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limacons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies.
Covering important aspects of the theory of unitary representations of nuclear Lie groups, this self-contained reference presents the general theory of energy representations and addresses various extensions of path groups and algebras.;Requiring only a general knowledge of the theory of unitary representations, topological groups and elementary stochastic analysis, Noncommutative Distributions: examines a theory of noncommutative distributions as irreducible unitary representations of groups of mappings from a manifold into a Lie group, with applications to gauge-field theories; describes the energy representation when the target Lie group G is compact; discusses representations of G-valued jet bundles when G is not necessarily compact; and supplies a synthesis of deep results on quasi-simple Lie algebras.;Providing over 200 bibliographic citations, drawings, tables, and equations, Noncommutative Distributions is intended for research mathematicians and theoretical and mathematical physicists studying current algebras, the representation theory of Lie groups, and quantum field theory, and graduate students in these disciplines.
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups. The differences between complex algebraic groups and complex Lie groups are sometimes subtle and it can be difficult to know which aspects of algebraic group theory apply and which must be modified. The Structure of Complex Lie Groups helps clarify those distinctions. Clearly written and well organized, this unique work presents material not found in other books on Lie groups and serves as an outstanding complement to them. |
![]() ![]() You may like...
Digital Twin - A Dynamic System and…
Ranjan Ganguli, Sondipon Adhikari, …
Hardcover
R3,940
Discovery Miles 39 400
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
Recent Trends in Mechanical Engineering…
C. S. Ramesh, Praduymna Ghosh, …
Hardcover
R6,655
Discovery Miles 66 550
Determinants, Groebner Bases and…
Winfried Bruns, Aldo Conca, …
Hardcover
R4,005
Discovery Miles 40 050
High-Performance Computing Using FPGAs
Wim Vanderbauwhede, Khaled Benkrid
Hardcover
R7,602
Discovery Miles 76 020
Mourt's Relation Or Journal of the…
Henry Martyn Dexter, William Bradford, …
Hardcover
R915
Discovery Miles 9 150
|