![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
These notes introduce a new class of algebraic curves on Hilbert modular surfaces. These curves are called twisted Teichmuller curves, because their construction is very reminiscent of Hirzebruch-Zagier cycles. These new objects are analyzed in detail and their main properties are described. In particular, the volume of twisted Teichmuller curves is calculated and their components are partially classified. The study of algebraic curves on Hilbert modular surfaces has been widely covered in the literature due to their arithmetic importance. Among these, twisted diagonals (Hirzebruch-Zagier cycles) are some of the most important examples.
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
This book, which is based on Polya's method of problem solving, aids students in their transition from calculus (or precalculus) to higher-level mathematics. The book begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends with suggested projects for independent study. Students will follow Polya's four step approach: analyzing the problem, devising a plan to solve the problem, carrying out that plan, and then determining the implication of the result. In addition to the Polya approach to proofs, this book places special emphasis on reading proofs carefully and writing them well. The authors have included a wide variety of problems, examples, illustrations and exercises, some with hints and solutions, designed specifically to improve the student's ability to read and write proofs. Historical connections are made throughout the text, and students are encouraged to use the rather extensive bibliography to begin making connections of their own. While standard texts in this area prepare students for future courses in algebra, this book also includes chapters on sequences, convergence, and metric spaces for those wanting to bridge the gap between the standard course in calculus and one in analysis.
The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry. A portion of the collected contributions have been developed from lectures given at the "International Conference on the Occasion of the 60th Birthday of S. J. Patterson," held at the University Gottingen, July 27-29 2009. Many of the included chapters have been contributed by invited participants. This volume presents and investigates the most recent developments in various key topics in analytic number theory and several related areas of mathematics. The volume is intended for graduate students and researchers of number theory as well as applied mathematicians interested in this broad field."
The book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O: ). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue."
A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algorithm. This excellent primer illustrates more than 150 solutions and proofs, thoroughly explained in clear language. The generous historical references and anecdotes interspersed throughout the text create interesting intermissions that will fuel readers' eagerness to inquire further about the topics and some of our greatest mathematicians. The author guides readers through the process of solving enigmatic proofs and problems, and assists them in making the transition from problem solving to theorem proving. At once a requisite text and an enjoyable read, Mathematical Problems and Proofs is an excellent entree to discrete mathematics for advanced students interested in mathematics, engineering, and science.
Combinatorial research has proceeded vigorously in Russia over the last few decades, based on both translated Western sources and original Russian material. The present volume extends the extremal approach to the solution of a large class of problems, including some that were hitherto regarded as exclusively algorithmic, and broadens the choice of theoretical bases for modelling real phenomena in order to solve practical problems. Audience: Graduate students of mathematics and engineering interested in the thematics of extremal problems and in the field of combinatorics in general. Can be used both as a textbook and as a reference handbook.
Sphere Packings is one of the most attractive and challenging subjects in mathematics. Almost 4 centuries ago, Kepler studied the densities of sphere packings and made his famous conjecture. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with othe subjects found. Thus, though some of its original problems are still open, sphere packings has been developed into an important discipline. This book tries to give a full account of this fascinating subject, especially its local aspects, discrete aspects and its proof methods.
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from 'Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.
Serge Lang (1927-2005) was one of the top mathematicians of our time. He was born in Paris in 1927, and moved with his family to California, where he graduated from Beverly Hills High School in 1943. He subsequently graduated from California Institute of Technology in 1946, and received a doctorate from Princeton University in 1951 before holding faculty positions at the University of Chicago and Columbia University (1955-1971). At the time of his death he was professor emeritus of Mathematics at Yale University. An excellent writer, Lang has made innumerable and invaluable contributions in diverse fields of mathematics. He was perhaps best known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He was also a member of the Bourbaki group. He was honored with the Cole Prize by the American Mathematical Society as well as with the Prix Carriere by the French Academy of Sciences. These five volumes collect the majority of his research papers, which range over a variety of topics.
Some of the central topics in number theory, presnted in a simple and concise fashion. The author covers an amazing amount of material, despite a leisurely pace and emphasis on readability. His heartfelt enthusiasm enables readers to see what is magical about the subject. All the topics are presented in a refreshingly elegant and efficient manner with clever examples and interesting problems throughout. The text is suitable for a graduate course in analytic number theory.
Serge Lang (1927-2005) was one of the top mathematicians of our time. He was born in Paris in 1927, and moved with his family to California, where he graduated from Beverly Hills High School in 1943. He subsequently graduated from California Institute of Technology in 1946, and received a doctorate from Princeton University in 1951 before holding faculty positions at the University of Chicago and Columbia University (1955-1971). At the time of his death he was professor emeritus of Mathematics at Yale University. An excellent writer, Lang has made innumerable and invaluable contributions in diverse fields of mathematics. He was perhaps best known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He was also a member of the Bourbaki group. He was honored with the Cole Prize by the American Mathematical Society as well as with the Prix Carriere by the French Academy of Sciences. These five volumes collect the majority of his research papers, which range over a variety of topics"
Ernst Witt, 1911-1991, was one of the most ingenious mathematicians of this century and has decisively shaped the development of various mathematical fields like algebra, number theory, group theory, combinatorics and Lie theory. This volume offers a complete collection of Witt's research papers; it also contains never before published articles, facsimiles and photos. Commentary by other authors provide an excellent survey on the further development of these mathematical fields.
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka.
Previous publications on the generalization of the Thomae formulae to "Zn" curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formulafor "Zn" Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory."
Written by a noted expert on logic and set theory, this study of basic number systems explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Geared toward undergraduate and beginning graduate students, it requires minimal mathematical training. Several helpful appendixes supplement the text. The author is Professor of Mathematics at Queens College in New York.
This is an updated English translation of Cohomologie Galoisienne, published more than thirty years ago as one of the very first versions of Lecture Notes in Mathematics. It includes a reproduction of an influential paper by R. Steinberg, together with some new material and an expanded bibliography.
In recent years there has been an increasing interest in problems involving closed form evaluations of (and representations of the Riemann Zeta function at positive integer arguments as) various families of series associated with the Riemann Zeta function ((s), the Hurwitz Zeta function ((s, a), and their such extensions and generalizations as (for example) Lerch's transcendent (or the Hurwitz-Lerch Zeta function) iI>(z, s, a). Some of these developments have apparently stemmed from an over two-century-old theorem of Christian Goldbach (1690-1764), which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782), from recent rediscoveries of a fairly rapidly convergent series representation for ((3), which is actually contained in a 1772 paper by Leonhard Euler (1707-1783), and from another known series representation for ((3), which was used by Roger Apery (1916-1994) in 1978 in his celebrated proof of the irrationality of ((3). This book is motivated essentially by the fact that the theories and applications of the various methods and techniques used in dealing with many different families of series associated with the Riemann Zeta function and its aforementioned relatives are to be found so far only"in widely scattered journal articles. Thus our systematic (and unified) presentation of these results on the evaluation and representation of the Zeta and related functions is expected to fill a conspicuous gap in the existing books dealing exclusively with these Zeta functions."
To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled "The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan". He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a "magical genius". During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: * M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. * C.
The study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool lies in the heart of Clifford analysis. The focus is on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. At the present time, the study of Clifford algebra and Clifford analysis has grown into a major research field. There are two sources of papers in this collection. One is from a satellite conference to the ICM 2002 in Beijing, held August 15-18 at the University of Macau; and the other stems from invited contributions by top-notch experts in the field.
This volume began as the last part of a one-term graduate course given at the Fields Institute for Research in the Mathematical Sciences in the Autumn of 1993. The course was one of four associated with the 1993-94 Fields Institute programme, which I helped to organise, entitled "Artin L-functions". Published as [132]' the final chapter of the course introduced a manner in which to construct class-group valued invariants from Galois actions on the algebraic K-groups, in dimensions two and three, of number rings. These invariants were inspired by the analogous Chin burg invariants of [34], which correspond to dimensions zero and one. The classical Chinburg invariants measure the Galois structure of classical objects such as units in rings of algebraic integers. However, at the "Galois Module Structure" workshop in February 1994, discussions about my invariant (0,1 (L/ K, 3) in the notation of Chapter 5) after my lecture revealed that a number of other higher-dimensional co homological and motivic invariants of a similar nature were beginning to surface in the work of several authors. Encouraged by this trend and convinced that K-theory is the archetypical motivic cohomology theory, I gratefully took the opportunity of collaboration on computing and generalizing these K-theoretic invariants. These generalizations took several forms - local and global, for example - as I followed part of number theory and the prevalent trends in the "Galois Module Structure" arithmetic geometry.
Dedicated to Jacques Carmona, an expert in noncommutative harmonic analysis, the volume presents excellent invited/refereed articles by top notch mathematicians. Topics cover general Lie theory, reductive Lie groups, harmonic analysis and the Langlands program, automorphic forms, and Kontsevich quantization. Good text for researchers and grad students in representation theory. |
![]() ![]() You may like...
Protecting Privacy through Homomorphic…
Kristin Lauter, Wei Dai, …
Hardcover
R3,121
Discovery Miles 31 210
Number Theory and Combinatorics - A…
Bruce M. Landman, Florian Luca, …
Hardcover
R5,799
Discovery Miles 57 990
|