0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (60)
  • R250 - R500 (63)
  • R500+ (1,783)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory

Seminaire de Theorie des Nombres, Paris 1987-88 (Paperback, Softcover reprint of the original 1st ed. 1990): Goldstein Seminaire de Theorie des Nombres, Paris 1987-88 (Paperback, Softcover reprint of the original 1st ed. 1990)
Goldstein
R1,537 Discovery Miles 15 370 Ships in 10 - 15 working days
Rigidity in Dynamics and Geometry - Contributions from the Programme Ergodic Theory, Geometric Rigidity and Number Theory,... Rigidity in Dynamics and Geometry - Contributions from the Programme Ergodic Theory, Geometric Rigidity and Number Theory, Isaac Newton Institute for the Mathematical Sciences Cambridge, United Kingdom, 5 January - 7 July 2000 (Paperback, Softcover reprint of the original 1st ed. 2002)
Marc Burger, Alessandra Iozzi
R2,937 Discovery Miles 29 370 Ships in 10 - 15 working days

This volume of proceedings is an offspring of the special semester Ergodic Theory, Geometric Rigidity and Number Theory which was held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from Jan uary until July, 2000. Beside the activities during the semester, there were workshops held in January, March and July, the first being of introductory nature with five short courses delivered over a week. Although the quality of the workshops was excellent throughout the semester, the idea of these proceedings came about during the March workshop, which is hence more prominently represented, The format of the volume has undergone many changes, but what has remained untouched is the enthusiasm of the contributors since the onset of the project: suffice it to say that even though only two months elapsed between the time we contacted the potential authors and the deadline to submit the papers, the deadline was respected in the vast majority of the cases. The scope of the papers is not completely uniform throughout the volume, although there are some points in common. We asked the authors to write papers keeping in mind the idea that they should be accessible to students. At the same time, we wanted the papers not to be a summary of results that appeared somewhere else."

Topics in Number Theory - In Honor of B. Gordon and S. Chowla (Paperback, Softcover reprint of the original 1st ed. 1999):... Topics in Number Theory - In Honor of B. Gordon and S. Chowla (Paperback, Softcover reprint of the original 1st ed. 1999)
Scott D. Ahlgren, George E. Andrews, Ken Ono
R1,520 Discovery Miles 15 200 Ships in 10 - 15 working days

From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. Skinner (Princeton University), "Deformations of Galois representations. " R. Stanley (Massachusetts Institute of Technology), "Some interesting hyperplane arrangements. " F. Rodriguez Villegas (Princeton University), "Modular Mahler measures. " T. Wooley (University of Michigan), "Diophantine problems in many variables: The role of additive number theory. " D. Zeilberger (Temple University), "Reverse engineering in combinatorics and number theory. " The papers in this volume provide an accurate picture of many of the topics presented at the conference including contributions from four of the plenary lectures."

Analytic Number Theory - Proceedings of a Conference in Honor of Paul T. Bateman (Paperback, Softcover reprint of the original... Analytic Number Theory - Proceedings of a Conference in Honor of Paul T. Bateman (Paperback, Softcover reprint of the original 1st ed. 1990)
B. Berndt
R2,947 Discovery Miles 29 470 Ships in 10 - 15 working days

On April 25-27, 1989, over a hundred mathematicians, including eleven from abroad, gathered at the University of Illinois Conference Center at Allerton Park for a major conference on analytic number theory. The occa sion marked the seventieth birthday and impending (official) retirement of Paul T. Bateman, a prominent number theorist and member of the mathe matics faculty at the University of Illinois for almost forty years. For fifteen of these years, he served as head of the mathematics department. The conference featured a total of fifty-four talks, including ten in vited lectures by H. Delange, P. Erdos, H. Iwaniec, M. Knopp, M. Mendes France, H. L. Montgomery, C. Pomerance, W. Schmidt, H. Stark, and R. C. Vaughan. This volume represents the contents of thirty of these talks as well as two further contributions. The papers span a wide range of topics in number theory, with a majority in analytic number theory."

Sequences (Paperback, Softcover reprint of the original 1st ed. 1983): H Halberstam, K. F. Roth Sequences (Paperback, Softcover reprint of the original 1st ed. 1983)
H Halberstam, K. F. Roth
R1,527 Discovery Miles 15 270 Ships in 10 - 15 working days

THIS volume is concerned with a substantial branch of number theory of which no connected account appears to exist; we describe the general nature of the constituent topics in the introduction. Although some excellent surveys dealing with limited aspects of the subject under con sideration have been published, the literature as a whole is far from easy to study. This is due in part to the extent of the literature; it is necessary to thread one's way through a maze of results, a complicated structure of inter-relationships, and many conflicting notations. In addition, however, not all the original papers are free from obscurities, and consequently some of these papers are difficult (a few even exceed ingly difficult) to master. We try to give a readable and coherent account of the subject, con taining a cross-section of the more interesting results. We felt that it would have been neither practicable nor desirable to attempt a compre hensive account; we treat each aspect of the subject from some special point of view, and select results accordingly. Needless to say, this approach entails the omission of many interesting and important results (quite apart from defects in the selection due to errors of judgement on our part). Those results selected for inclusion are, however, proved in complete detail and without the assumption of any prior knowledge on the part of the reader."

p-Adic Automorphic Forms on Shimura Varieties (Paperback, Softcover reprint of the original 1st ed. 2004): Haruzo Hida p-Adic Automorphic Forms on Shimura Varieties (Paperback, Softcover reprint of the original 1st ed. 2004)
Haruzo Hida
R5,609 Discovery Miles 56 090 Ships in 10 - 15 working days

In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there."

Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985): P.D.T.A. Elliott Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985)
P.D.T.A. Elliott
R1,575 Discovery Miles 15 750 Ships in 10 - 15 working days

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = +/- I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x". Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Representations of Integers as Sums of Squares (Paperback, Softcover reprint of the original 1st ed. 1985): E Grosswald Representations of Integers as Sums of Squares (Paperback, Softcover reprint of the original 1st ed. 1985)
E Grosswald
R2,865 Discovery Miles 28 650 Ships in 10 - 15 working days

During the academic year 1980-1981 I was teaching at the Technion-the Israeli Institute of Technology-in Haifa. The audience was small, but con sisted of particularly gifted and eager listeners; unfortunately, their back ground varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the inten tion of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be."

Ramanujan's Lost Notebook - Part III (Hardcover, 2012 ed.): George E. Andrews, Bruce C. Berndt Ramanujan's Lost Notebook - Part III (Hardcover, 2012 ed.)
George E. Andrews, Bruce C. Berndt
R4,423 Discovery Miles 44 230 Ships in 10 - 15 working days

In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.

This volume is the third of five volumes that the authors plan to write on Ramanujan's lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988. The ordinary partition function p(n) is the focus of this third volume. In particular, ranks, cranks, and congruences for p(n) are in the spotlight. Other topics include the Ramanujan tau-function, the Rogers-Ramanujan functions, highly composite numbers, and sums of powers of theta functions.

Review from the second volume:

"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."
- MathSciNet

Review from the first volume:

"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."
- Gazette of the Australian Mathematical Society"

Teoria dei Numeri - Lectures Given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Varenna... Teoria dei Numeri - Lectures Given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Varenna (Como), Italy, August 16-25, 1955 (English, French, Paperback, 2011)
G. Ricci
R865 Discovery Miles 8 650 Ships in 10 - 15 working days

H. Davenport: Probl mes d empilement et de d couvrement.- L.J. Mordell: Equazioni diofantee.- C.A. Rogers: The geometry of numbers.- P. Erd s: Some problems on the distribution of prime numbers.- G. Ricci: Sul reticolo dei punti aventi per coordinate i numeri primi.

Number Theory Revealed - An Introduction (Hardcover): Andrew Granville Number Theory Revealed - An Introduction (Hardcover)
Andrew Granville
R2,086 Discovery Miles 20 860 Ships in 12 - 17 working days

Number Theory Revealed: An Introduction presents a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations, as well as hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod p, Fermat's Last Theorem for polynomials, and modern twists on traditional questions. This book provides careful coverage of all core topics in a standard introductory number theory course with pointers to some exciting further directions. An expanded edition, Number Theory Revealed: A Masterclass, offers a more comprehensive approach, adding additional material in further chapters and appendices. It is ideal for instructors who wish to tailor a class to their own interests and gives well-prepared students further opportunities to challenge themselves and push beyond core number theory concepts, serving as a springboard to many current themes in mathematics.

Analytic Number Theory - Proceedings of a Conference In Honor of Heini Halberstam Volume 1 (Paperback, Softcover reprint of the... Analytic Number Theory - Proceedings of a Conference In Honor of Heini Halberstam Volume 1 (Paperback, Softcover reprint of the original 1st ed. 1996)
Bruce C. Berndt, Harold G. Diamond, Adolf J. Hildebrand
R4,643 Discovery Miles 46 430 Ships in 10 - 15 working days

On May 16 -20, 1995, approximately 150 mathematicians gathered at the Conference Center of the University of Illinois at Allerton Park for an Inter national Conference on Analytic Number Theory. The meeting marked the approaching official retirement of Heini Halberstam from the mathematics fac ulty of the University of Illinois at Urbana-Champaign. Professor Halberstam has been at the University since 1980, for 8 years as head of the Department of Mathematics, and has been a leading researcher and teacher in number theory for over forty years. The program included invited one hour lectures by G. Andrews, J. Bour gain, J. M. Deshouillers, H. Halberstam, D. R. Heath-Brown, H. Iwaniec, H. L. Montgomery, R. Murty, C. Pomerance, and R. C. Vaughan, and almost one hundred other talks of varying lengths. These volumes comprise contributions from most of the principal speakers and from many of the other participants, as well as some papers from mathematicians who were unable to attend. The contents span a broad range of themes from contemporary number theory, with the majority having an analytic flavor."

Factorization and Primality Testing (Paperback, Softcover reprint of the original 1st ed. 1989): David M. Bressoud Factorization and Primality Testing (Paperback, Softcover reprint of the original 1st ed. 1989)
David M. Bressoud
R1,877 Discovery Miles 18 770 Ships in 10 - 15 working days

"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.

Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms (Paperback, 2011 ed.): Andr e Unterberger Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms (Paperback, 2011 ed.)
Andr e Unterberger
R1,535 Discovery Miles 15 350 Ships in 10 - 15 working days

Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincare summation process, which consists in building automorphic distributions as series of "g"-transforms, for "g E SL"(2";"Z), of some initial function, say in "S"(R2), is analyzed in detail. On, a large class of new automorphic functions or measures is built in the same way: one of its features lies in an interpretation, as a spectral density, of the restriction of the zeta function to any line within the critical strip.

The book is addressed to a wide audience of advanced graduate students and researchers working in analytic number theory or pseudo-differential analysis."

Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Paperback, Softcover reprint of the... Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Paperback, Softcover reprint of the original 1st ed. 1997)
Andrei Y. Khrennikov
R2,902 Discovery Miles 29 020 Ships in 10 - 15 working days

N atur non facit saltus? This book is devoted to the fundamental problem which arises contin uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom."

The Arithmetic of Hyperbolic 3-Manifolds (Paperback, Softcover reprint of the original 1st ed. 2003): Colin MacLachlan, Alan W.... The Arithmetic of Hyperbolic 3-Manifolds (Paperback, Softcover reprint of the original 1st ed. 2003)
Colin MacLachlan, Alan W. Reid
R1,823 Discovery Miles 18 230 Ships in 10 - 15 working days

Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists

Arithmetics (Paperback, 2011 ed.): Marc Hindry Arithmetics (Paperback, 2011 ed.)
Marc Hindry
R2,272 Discovery Miles 22 720 Ships in 10 - 15 working days

Number theory is a branch of mathematics which draws its vitality from a rich historical background. It is also traditionally nourished through interactions with other areas of research, such as algebra, algebraic geometry, topology, complex analysis and harmonic analysis. More recently, it has made a spectacular appearance in the field of theoretical computer science and in questions of communication, cryptography and error-correcting codes. Providing an elementary introduction to the central topics in number theory, this book spans multiple areas of research. The first part corresponds to an advanced undergraduate course. All of the statements given in this part are of course accompanied by their proofs, with perhaps the exception of some results appearing at the end of the chapters. A copious list of exercises, of varying difficulty, are also included here. The second part is of a higher level and is relevant for the first year of graduate school. It contains an introduction to elliptic curves and a chapter entitled "Developments and Open Problems", which introduces and brings together various themes oriented toward ongoing mathematical research. Given the multifaceted nature of number theory, the primary aims of this book are to: - provide an overview of the various forms of mathematics useful for studying numbers - demonstrate the necessity of deep and classical themes such as Gauss sums - highlight the role that arithmetic plays in modern applied mathematics - include recent proofs such as the polynomial primality algorithm - approach subjects of contemporary research such as elliptic curves - illustrate the beauty of arithmetic The prerequisites for this text are undergraduate level algebra and a little topology of Rn. It will be of use to undergraduates, graduates and phd students, and may also appeal to professional mathematicians as a reference text.

Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change (Hardcover, 2012 ed.): Jayce Getz,... Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change (Hardcover, 2012 ed.)
Jayce Getz, Mark Goresky
R1,566 Discovery Miles 15 660 Ships in 10 - 15 working days

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adelic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

Making Transcendence Transparent - An intuitive approach to classical transcendental number theory (Paperback, Softcover... Making Transcendence Transparent - An intuitive approach to classical transcendental number theory (Paperback, Softcover reprint of hardcover 1st ed. 2004)
Edward B. Burger, Robert Tubbs
R1,762 Discovery Miles 17 620 Ships in 10 - 15 working days

While the theory of transcendental numbers is a fundamental and important branch of number theory, most mathematicians know only its most elementary results. The aim of "Making Transcendence Transparent" is to provide the reader with an understanding of the basic principles and tools of transcendence theory and an intuitive framework within which the major results can be appreciated and their proofs can be understood. The book includes big picture overviews of the over-arching ideas, and general points of attack in particular arguments, so the reader will enjoy and appreciate the panoramic view of transcendence. It is designed to appeal to interested mathematicians, graduate students, and advanced undergraduates.

Histoire de l'Analyse Diophantienne Classique - D'Abu Kamil A Fermat (French, Hardcover): Roshdi Rashed Histoire de l'Analyse Diophantienne Classique - D'Abu Kamil A Fermat (French, Hardcover)
Roshdi Rashed
R4,799 Discovery Miles 47 990 Ships in 12 - 17 working days
Number Theory, Analysis and Geometry - In Memory of Serge Lang (Hardcover, 2012 ed.): Dorian Goldfeld, Jay Jorgenson, Peter... Number Theory, Analysis and Geometry - In Memory of Serge Lang (Hardcover, 2012 ed.)
Dorian Goldfeld, Jay Jorgenson, Peter Jones, Dinakar Ramakrishnan, Kenneth Ribet, …
R4,725 Discovery Miles 47 250 Ships in 10 - 15 working days

Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.

Local Fields (Hardcover, 1st ed. 1979. Corr. 2nd printing 1995): Marvin J. Greenberg Local Fields (Hardcover, 1st ed. 1979. Corr. 2nd printing 1995)
Marvin J. Greenberg; Jean-Pierre Serre
R1,816 Discovery Miles 18 160 Ships in 12 - 17 working days

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation." The chapters are grouped in "parts." There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials," since using the language of algebraic geometry would have led me too far astray."

Ramanujan's Notebooks - Part II (Paperback, Softcover reprint of the original 1st ed. 1989): Bruce C. Berndt Ramanujan's Notebooks - Part II (Paperback, Softcover reprint of the original 1st ed. 1989)
Bruce C. Berndt
R4,618 Discovery Miles 46 180 Ships in 10 - 15 working days

During the years 1903-1914, Ramanujan recorded many of his mathematical discoveries in notebooks without providing proofs. Although many of his results were already in the literature, more were not. Almost a decade after Ramanujan's death in 1920, G.N. Watson and B.M. Wilson began to edit his notebooks but never completed the task. A photostat edition, with no editing, was published by the Tata Institute of Fundamental Research in Bombay in 1957. This book is the second of four volumes devoted to the editing of Ramanujan's Notebooks. Part I, published in 1985, contains an account of Chapters 1-9 in the second notebook as well as a description of Ramanujan's quarterly reports. In this volume, we examine Chapters 10-15 in Ramanujan's second notebook. If a result is known, we provide references in the literature where proofs may be found; if a result is not known, we attempt to prove it. Not only are the results fascinating, but, for the most part, Ramanujan's methods remain a mystery. Much work still needs to be done. We hope readers will strive to discover Ramanujan's thoughts and further develop his beautiful ideas.

Contributions in Analytic and Algebraic Number Theory - Festschrift for S. J. Patterson (Hardcover, 2012 Ed.): Valentin Blomer,... Contributions in Analytic and Algebraic Number Theory - Festschrift for S. J. Patterson (Hardcover, 2012 Ed.)
Valentin Blomer, Preda Mihailescu
R4,383 Discovery Miles 43 830 Ships in 10 - 15 working days

The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry. A portion of the collected contributions have been developed from lectures given at the "International Conference on the Occasion of the 60th Birthday of S. J. Patterson," held at the University Gottingen, July 27-29 2009. Many of the included chapters have been contributed by invited participants.

This volume presents and investigates the most recent developments in various key topics in analytic number theory and several related areas of mathematics.

The volume is intended for graduate students and researchers of number theory as well as applied mathematicians interested in this broad field."

Partitions, q-Series, and Modular Forms (Hardcover, 2012): Krishnaswami Alladi, Frank Garvan Partitions, q-Series, and Modular Forms (Hardcover, 2012)
Krishnaswami Alladi, Frank Garvan
R5,100 Discovery Miles 51 000 Ships in 10 - 15 working days

Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Star Wars Legion: Director Orson Krennic
R481 Discovery Miles 4 810
Current Theories and Practice in the…
Serpil Karlidag, Selda Bulut Hardcover R7,859 Discovery Miles 78 590
Payback In Death
J. D. Robb Paperback R295 R264 Discovery Miles 2 640
Five Nights at Freddy's: Core Collection
R529 Discovery Miles 5 290
The List
Barry Gilder Paperback R340 Discovery Miles 3 400
Einsterns Schwester - Sprache und Lesen…
Paperback R424 Discovery Miles 4 240
Lifesize Creepy Crawlies
Sophy Henn Paperback R288 R200 Discovery Miles 2 000
The Macarian Legacy - The Place of…
Marcus Plested Hardcover R6,705 R5,768 Discovery Miles 57 680
Who Walks With These Feet?
Cari Meister Paperback R259 R234 Discovery Miles 2 340
The Cloud of Unknowing - A Book Of…
Evelyn Underhill Hardcover R571 Discovery Miles 5 710

 

Partners