0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (58)
  • R250 - R500 (63)
  • R500+ (1,700)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory

Zeta Functions, Topology and Quantum Physics (Paperback, Softcover reprint of hardcover 1st ed. 2005): Takashi Aoki, Shigeru... Zeta Functions, Topology and Quantum Physics (Paperback, Softcover reprint of hardcover 1st ed. 2005)
Takashi Aoki, Shigeru Kanemitsu, Mikio Nakahara, Yasuo Ohno
R3,996 Discovery Miles 39 960 Ships in 18 - 22 working days

This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Japan, during the period of March 3-6, 2003. The aims of this symposium were to establish mutual understanding and to exchange ideas among researchers working in various fields which have relation to zeta functions and zeta values. We are very happy to add this volume to the series Developments in Mathematics from Springer. In this respect, Professor Krishnaswami Alladi helped us a lot by showing his keen and enthusiastic interest in publishing this volume and by contributing his paper with Alexander Berkovich. We gratefully acknowledge financial support from Kinki University. We would like to thank Professor Megumu Munakata, Vice-Rector of Kinki University, and Professor Nobuki Kawashima, Director of School of Interdisciplinary Studies of Science and Engineering, Kinki Univ- sity, for their interest and support. We also thank John Martindale of Springer for his excellent editorial work.

Tauberian Theory - A Century of Developments (Paperback, Softcover reprint of hardcover 1st ed. 2004): Jacob Korevaar Tauberian Theory - A Century of Developments (Paperback, Softcover reprint of hardcover 1st ed. 2004)
Jacob Korevaar
R3,388 Discovery Miles 33 880 Ships in 18 - 22 working days

Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation," which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions... Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions (Paperback, Softcover reprint of hardcover 1st ed. 2002)
Stephen C. Milne
R1,371 Discovery Miles 13 710 Ships in 18 - 22 working days

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found. The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, `This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.' Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.

Nevanlinna's Theory of Value Distribution - The Second Main Theorem and its Error Terms (Paperback, Softcover reprint of... Nevanlinna's Theory of Value Distribution - The Second Main Theorem and its Error Terms (Paperback, Softcover reprint of hardcover 1st ed. 2001)
William Cherry, Zhuan Ye
R2,879 Discovery Miles 28 790 Ships in 18 - 22 working days

On the one hand, this monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution because the authors only assume the reader is familiar with the basics of complex analysis. On the other hand, the monograph also serves as a valuable reference for the research specialist because the authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its "number-theoretic digressions." These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.

Lectures on the Theory of Algebraic Numbers (Paperback, Softcover reprint of hardcover 1st ed. 1981): E. T. Hecke Lectures on the Theory of Algebraic Numbers (Paperback, Softcover reprint of hardcover 1st ed. 1981)
E. T. Hecke; Translated by G. R. Brauer, J.R. Goldman, R. Kotzen
R2,036 Discovery Miles 20 360 Ships in 18 - 22 working days

. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g., "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R."

Limit Theorems for the Riemann Zeta-Function (Paperback, Softcover reprint of hardcover 1st ed. 1996): Antanas Laurincikas Limit Theorems for the Riemann Zeta-Function (Paperback, Softcover reprint of hardcover 1st ed. 1996)
Antanas Laurincikas
R4,246 Discovery Miles 42 460 Ships in 18 - 22 working days

The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.

Approximation by Algebraic Numbers (Paperback): Yann Bugeaud Approximation by Algebraic Numbers (Paperback)
Yann Bugeaud
R2,194 R2,030 Discovery Miles 20 300 Save R164 (7%) Ships in 10 - 15 working days

Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.

Heights of Polynomials and Entropy in Algebraic Dynamics (Paperback, Softcover reprint of hardcover 1st ed. 1999): Graham... Heights of Polynomials and Entropy in Algebraic Dynamics (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Graham Everest, Thomas Ward
R1,429 Discovery Miles 14 290 Ships in 18 - 22 working days

The main theme of this book is the theory of heights as they appear in various guises. This includes a large body of results on Mahlers measure of the height of a polynomial. The authors'approach is very down to earth as they cover the rationals, assuming no prior knowledge of elliptic curves. The chapters include examples and particular computations, with all special calculation included so as to be self-contained. The authors devote space to discussing Mahlers measure and to giving some convincing and original examples to explain this phenomenon. XXXXXXX NEUER TEXT The main theme of this book is the theory of heights as it appears in various guises. To this End.txt.Int.:, it examines the results of Mahlers measure of the height of a polynomial, which have never before appeared in book form. The authors take a down-to-earth approach that includes convincing and original examples. The book uncovers new and interesting connections between number theory and dynamics and will be interesting to researchers in both number theory and nonlinear dynamics."

Counting and Configurations - Problems in Combinatorics, Arithmetic, and Geometry (Paperback, Softcover reprint of hardcover... Counting and Configurations - Problems in Combinatorics, Arithmetic, and Geometry (Paperback, Softcover reprint of hardcover 1st ed. 2003)
Jiri Herman; Translated by K. Dilcher; Radan Kucera, Jaromir Simsa
R3,341 Discovery Miles 33 410 Ships in 18 - 22 working days

This book presents methods of solving problems in three areas of elementary combinatorial mathematics: classical combinatorics, combinatorial arithmetic, and combinatorial geometry. In each topic, brief theoretical discussions are immediately followed by carefully worked-out examples of increasing degrees of difficulty, and by exercises that range from routine to rather challenging. While this book emphasizes some methods that are not usually covered in beginning university courses, it nevertheless teaches techniques and skills that are useful not only in the specific topics covered here. There are approximately 310 examples and 650 exercises. Jiri Herman is the headmaster of a prestigious secondary school (Gymnazium) in Brno, Radan Kucera is Associate Professor of Mathematics at Masaryk University in Brno, and Jaromir Simsa is a researcher at the Mathematical Institute of the Academy of Sciences of the Czech Republic. The translator, Karl Dilcher, is Professor of Mathematics at Dalhousie University in Canada. This book can be seen as a continuation of the previous book by the same authors and also translated by Karl Dilcher, Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory (Springer-Verlag 2000).

Perfect Lattices in Euclidean Spaces (Paperback, Softcover reprint of hardcover 1st ed. 2003): Jacques Martinet Perfect Lattices in Euclidean Spaces (Paperback, Softcover reprint of hardcover 1st ed. 2003)
Jacques Martinet
R4,081 Discovery Miles 40 810 Ships in 18 - 22 working days

Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.

Introduction to Modular Forms (Paperback, Softcover reprint of the original 1st ed. 1987): Serge Lang Introduction to Modular Forms (Paperback, Softcover reprint of the original 1st ed. 1987)
Serge Lang
R3,332 Discovery Miles 33 320 Ships in 18 - 22 working days

From the reviews "This book gives a thorough introduction to several theories that are fundamental to research on modular forms. Most of the material, despite its importance, had previously been unavailable in textbook form. Complete and readable proofs are given... In conclusion, this book is a welcome addition to the literature for the growing number of students and mathematicians in other fields who want to understand the recent developments in the theory of modular forms."
#"Mathematical Reviews"#
"This book will certainly be indispensable to all those wishing to get an up-to-date initiation to the theory of modular forms."
#"Publicationes Mathematicae"#

High Performance Optimization (Paperback, Softcover reprint of the original 1st ed. 2000): Hans Frenk, Kees Roos, Tamas... High Performance Optimization (Paperback, Softcover reprint of the original 1st ed. 2000)
Hans Frenk, Kees Roos, Tamas Terlaky, Shuzhong Zhang
R5,895 Discovery Miles 58 950 Ships in 18 - 22 working days

For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.

Number Theory - Volume I: Tools and Diophantine Equations (Paperback, Softcover reprint of hardcover 1st ed. 2007): Henri Cohen Number Theory - Volume I: Tools and Diophantine Equations (Paperback, Softcover reprint of hardcover 1st ed. 2007)
Henri Cohen
R1,625 Discovery Miles 16 250 Ships in 18 - 22 working days

The central theme of this book is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The book contains more than 350 exercises and the text is largely self-contained. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five appendices on these techniques.

Mathematics Is Not a Spectator Sport (Paperback, Softcover reprint of hardcover 1st ed. 2005): George Phillips Mathematics Is Not a Spectator Sport (Paperback, Softcover reprint of hardcover 1st ed. 2005)
George Phillips
R1,397 Discovery Miles 13 970 Ships in 18 - 22 working days

Compared to other popular math books, there is more algebraic manipulation, and more applications of algebra in number theory and geometry

Presents an exciting variety of topics to motivate beginning students

May be used as an introductory course or as background reading

The Book of Prime Number Records (Paperback, Softcover reprint of the original 2nd ed. 1989): Paulo Ribenboim The Book of Prime Number Records (Paperback, Softcover reprint of the original 2nd ed. 1989)
Paulo Ribenboim
R2,912 Discovery Miles 29 120 Ships in 18 - 22 working days

This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquim series established to honor Professors A. J. Coleman and H. W. Ellis and to acknow ledge their long lasting interest in the quality of teaching under graduate students. In another colloquim lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guilllless Book oj Records, remainded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will include also some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work."

The Arithmetic of Hyperbolic 3-Manifolds (Paperback, Softcover reprint of the original 1st ed. 2003): Colin MacLachlan, Alan W.... The Arithmetic of Hyperbolic 3-Manifolds (Paperback, Softcover reprint of the original 1st ed. 2003)
Colin MacLachlan, Alan W. Reid
R1,685 Discovery Miles 16 850 Ships in 18 - 22 working days

Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists

Intersections of Hirzebruch-Zagier Divisors and CM Cycles (Paperback, 2012): Benjamin Howard, Tonghai Yang Intersections of Hirzebruch-Zagier Divisors and CM Cycles (Paperback, 2012)
Benjamin Howard, Tonghai Yang
R1,294 Discovery Miles 12 940 Ships in 18 - 22 working days

This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.

Heights in Diophantine Geometry (Paperback): Enrico Bombieri, Walter Gubler Heights in Diophantine Geometry (Paperback)
Enrico Bombieri, Walter Gubler
R2,009 Discovery Miles 20 090 Ships in 10 - 15 working days

Diophantine geometry has been studied by number theorists for thousands of years, since the time of Pythagoras, and has continued to be a rich area of ideas such as Fermat's Last Theorem, and most recently the ABC conjecture. This monograph is a bridge between the classical theory and modern approach via arithmetic geometry. The authors provide a clear path through the subject for graduate students and researchers. They have re-examined many results and much of the literature, and give a thorough account of several topics at a level not seen before in book form. The treatment is largely self-contained, with proofs given in full detail. Many results appear here for the first time. The book concludes with a comprehensive bibliography. It is destined to be a definitive reference on modern diophantine geometry, bringing a new standard of rigor and elegance to the field.

Number Theory and Physics - Proceedings of the Winter School, Les Houches, France, March 7-16, 1989 (Paperback, Softcover... Number Theory and Physics - Proceedings of the Winter School, Les Houches, France, March 7-16, 1989 (Paperback, Softcover reprint of the original 1st ed. 1990)
Jean-Marc Luck, Pierre Moussa, Michel Waldschmidt
R2,674 Discovery Miles 26 740 Ships in 18 - 22 working days

7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.

Probabilistic Number Theory II - Central Limit Theorems (Paperback, Softcover reprint of the original 1st ed. 1980): P.D.T.A.... Probabilistic Number Theory II - Central Limit Theorems (Paperback, Softcover reprint of the original 1st ed. 1980)
P.D.T.A. Elliott
R2,681 Discovery Miles 26 810 Ships in 18 - 22 working days

In this volume we study the value distribution of arithmetic functions, allowing unbounded renormalisations. The methods involve a synthesis of Probability and Number Theory; sums of independent infinitesimal random variables playing an important role. A central problem is to decide when an additive arithmetic function fin) admits a renormalisation by real functions a(x) and {3(x) > 0 so that asx ~ 00 the frequencies vx(n;f (n) - a(x) :s;; z {3 (x) ) converge weakly; (see Notation). In contrast to volume one we allow {3(x) to become unbounded with x. In particular, we investigate to what extent one can simulate the behaviour of additive arithmetic functions by that of sums of suit ably defined independent random variables. This fruiful point of view was intro duced in a 1939 paper of Erdos and Kac. We obtain their (now classical) result in Chapter 12. Subsequent methods involve both Fourier analysis on the line, and the appli cation of Dirichlet series. Many additional topics are considered. We mention only: a problem of Hardy and Ramanujan; local properties of additive arithmetic functions; the rate of convergence of certain arithmetic frequencies to the normal law; the arithmetic simulation of all stable laws. As in Volume I the historical background of various results is discussed, forming an integral part of the text. In Chapters 12 and 19 these considerations are quite extensive, and an author often speaks for himself.

Making Transcendence Transparent - An intuitive approach to classical transcendental number theory (Paperback, Softcover... Making Transcendence Transparent - An intuitive approach to classical transcendental number theory (Paperback, Softcover reprint of hardcover 1st ed. 2004)
Edward B. Burger, Robert Tubbs
R1,629 Discovery Miles 16 290 Ships in 18 - 22 working days

While the theory of transcendental numbers is a fundamental and important branch of number theory, most mathematicians know only its most elementary results. The aim of "Making Transcendence Transparent" is to provide the reader with an understanding of the basic principles and tools of transcendence theory and an intuitive framework within which the major results can be appreciated and their proofs can be understood. The book includes big picture overviews of the over-arching ideas, and general points of attack in particular arguments, so the reader will enjoy and appreciate the panoramic view of transcendence. It is designed to appeal to interested mathematicians, graduate students, and advanced undergraduates.

Introduction to Number Theory (Paperback, Softcover reprint of the original 1st ed. 1982): P. Shiu Introduction to Number Theory (Paperback, Softcover reprint of the original 1st ed. 1982)
P. Shiu; L.-K. Hua
R2,754 Discovery Miles 27 540 Ships in 18 - 22 working days

to Number Theory Translated from the Chinese by Peter Shiu With 14 Figures Springer-Verlag Berlin Heidelberg New York 1982 HuaLooKeng Institute of Mathematics Academia Sinica Beijing The People's Republic of China PeterShlu Department of Mathematics University of Technology Loughborough Leicestershire LE 11 3 TU United Kingdom ISBN -13 : 978-3-642-68132-5 e-ISBN -13 : 978-3-642-68130-1 DOl: 10.1007/978-3-642-68130-1 Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910 -. Introduc- tion to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.5 12'.7.82-645. ISBN-13:978-3-642-68132-5 (U.S.). AACR2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustra- tions, broadcasting, reproductiOli by photocopying machine or similar means, and storage in data banks. Under 54 of the German Copyright Law where copies are made for other than private use a fee is payable to "VerwertungsgeselIschaft Wort", Munich. (c) Springer-Verlag Berlin Heidelberg 1982 Softcover reprint of the hardcover 1st edition 1982 Typesetting: Buchdruckerei Dipl.-Ing. Schwarz' Erben KG, Zwettl. 214113140-5432 I 0 Preface to the English Edition The reasons for writing this book have already been given in the preface to the original edition and it suffices to append a few more points.

Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985): P.D.T.A. Elliott Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985)
P.D.T.A. Elliott
R1,457 Discovery Miles 14 570 Ships in 18 - 22 working days

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = +/- I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x". Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Teoria dei Numeri - Lectures Given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Varenna... Teoria dei Numeri - Lectures Given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Varenna (Como), Italy, August 16-25, 1955 (English, French, Paperback, 2011)
G. Ricci
R803 Discovery Miles 8 030 Ships in 18 - 22 working days

H. Davenport: Probl mes d empilement et de d couvrement.- L.J. Mordell: Equazioni diofantee.- C.A. Rogers: The geometry of numbers.- P. Erd s: Some problems on the distribution of prime numbers.- G. Ricci: Sul reticolo dei punti aventi per coordinate i numeri primi.

Factorization and Primality Testing (Paperback, Softcover reprint of the original 1st ed. 1989): David M. Bressoud Factorization and Primality Testing (Paperback, Softcover reprint of the original 1st ed. 1989)
David M. Bressoud
R1,735 Discovery Miles 17 350 Ships in 18 - 22 working days

"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Fibonacci Resonance and Other New…
Clive N. Menhinick Hardcover R1,421 Discovery Miles 14 210
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun Hardcover R4,104 Discovery Miles 41 040
Restricted Congruences in Computing
Khodakhast Bibak Hardcover R1,750 Discovery Miles 17 500
Combinatorics, Modeling, Elementary…
Ivan V Cherednik Hardcover R2,874 Discovery Miles 28 740
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes Hardcover R1,326 Discovery Miles 13 260
Smooth-automorphic Forms And…
Harald Grobner Hardcover R2,147 Discovery Miles 21 470
Fibonacci-Like Sequences - A Scientific…
Edgar M Alexander Hardcover R690 Discovery Miles 6 900
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, … Hardcover R1,670 Discovery Miles 16 700
Fundamentals of Number Theory
Emanuel Patterson Hardcover R3,188 R2,891 Discovery Miles 28 910
Numbers
Samuel Hiti Hardcover R546 Discovery Miles 5 460

 

Partners