![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
Owing to the developments and applications of computer science, ma thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. The progress achieved has been both important practically as well as satisfactory from the theoretical view point. It'or example, from the seventeenth century till now, a great deal of effort was made in developing methods for approximating single integrals and there were only a few works on multiple quadrature until the 1950's. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one. The number theoretic method may be described as follows. We use num ber theory to construct a sequence of uniformly distributed sets in the s dimensional unit cube G , where s ~ 2. Then we use the sequence to s reduce a difficult analytic problem to an arithmetic problem which may be calculated by computer. For example, we may use the arithmetic mean of the values of integrand in a given uniformly distributed set of G to ap s proximate the definite integral over G such that the principal order of the s error term is shown to be of the best possible kind, if the integrand satis fies certain conditions.
In this volume we present a survey of the theory of Galois module structure for rings of algebraic integers. This theory has experienced a rapid growth in the last ten to twelve years, acquiring mathematical depth and significance and leading to new insights also in other branches of algebraic number theory. The decisive take-off point was the discovery of its connection with Artin L-functions. We shall concentrate on the topic which has been at the centre of this development, namely the global module structure for tame Galois extensions of numberfields -in other words of extensions with trivial local module structure. The basic problem can be stated in down to earth terms: the nature of the obstruction to the existence of a free basis over the integral group ring ("normal integral basis"). Here a definitive pattern of a theory has emerged, central problems have been solved, and a stage has clearly been reached when a systematic account has become both possible and desirable. Of course, the solution of one set of problems has led to new questions and it will be our aim also to discuss some of these. We hope to help the reader early on to an understanding of the basic structure of our theory and of its central theme, and to motivate at each successive stage the introduction of new concepts and new tools.
7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.
As the open-source and free alternative to expensive software like MapleTM, MathematicaR, and MATLABR, Sage offers anyone with a web browser the ability to use cutting-edge mathematical software and share the results with others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students during Calculus II, Multivariate Calculus, Differential Equations, Linear Algebra, Math Modeling, or Operations Research. This book assumes no background in programming, but the reader who finishes the book will have learned about 60 percent of a first semester computer science course, including much of the Python programming language. The audience is not only math majors, but also physics, engineering, environmental science, finance, chemistry, economics, data science, and computer science majors. Many of the book's examples are drawn from those fields. Filled with ""challenges"" for the students to test their progress, the book is also ideal for self-study. What's New in the Second Edition: In 2019, Sage transitioned from Python 2 to Python 3, which changed the syntax in several significant ways, including for the print command. All the examples in this book have been rewritten to be compatible with Python 3. Moreover, every code block longer than four lines has been placed in an archive on the book's website http://www.sage-for-undergraduates.org that is maintained by the author, so that the students won't have to retype the code! Other additions include: The number of ""challenges"" for the students to test their own progress in learning Sage has roughly doubled, which will be a great boon for self-study. There's approximately 150 pages of new content, including: New projects on Leontief Input-Output Analysis and on Environmental ScienceNew sections about Complex Numbers and Complex Analysis, on SageTex, and on solving problems via Monte-Carlo Simulations. The first three sections of Chapter 1 have been completely rewritten to give absolute beginners a smoother transition into Sage.
A conference on Analytic Number Theory and Diophantine Problems was held from June 24 to July 3, 1984 at the Oklahoma State University in Stillwater. The conference was funded by the National Science Foundation, the College of Arts and Sciences and the Department of Mathematics at Oklahoma State University. The papers in this volume represent only a portion of the many talks given at the conference. The principal speakers were Professors E. Bombieri, P. X. Gallagher, D. Goldfeld, S. Graham, R. Greenberg, H. Halberstam, C. Hooley, H. Iwaniec, D. J. Lewis, D. W. Masser, H. L. Montgomery, A. Selberg, and R. C. Vaughan. Of these, Professors Bombieri, Goldfeld, Masser, and Vaughan gave three lectures each, while Professor Hooley gave two. Special sessions were also held and most participants gave talks of at least twenty minutes each. Prof. P. Sarnak was unable to attend but a paper based on his intended talk is included in this volume. We take this opportunity to thank all participants for their (enthusiastic) support for the conference. Judging from the response, it was deemed a success. As for this volume, I take responsibility for any typographical errors that may occur in the final print. I also apologize for the delay (which was due to the many problems incurred while retyping all the papers). A. special thanks to Dollee Walker for retyping the papers and to Prof. W. H. Jaco for his support, encouragement and hard work in bringing the idea of the conference to fruition.
Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.
The pioneering work of French mathematician Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book was written in honor of the 400th anniversary of his birth, providing readers with an overview of the many properties of Fermat numbers and demonstrating their applications in areas such as number theory, probability theory, geometry, and signal processing. This book introduces a general mathematical audience to basic mathematical ideas and algebraic methods connected with the Fermat numbers.
This book contains 43 papers form among the 55 papers presented at the Sixth International Conference on Fibonacci Numbers and Their Applications which was held at Washington State University, Pullman, Washington, from July 18-22, 1994. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its five predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. October 30, 1995 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Alwyn F. Horadam University of New England Armidale, N.S.W., Australia Andreas N. Philippou 26 Atlantis Street Aglangia, Nicosia Cyprus xxi THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Long, Calvin T., Co-Chair Horadam, A.F. (Australia), Co-Chair Webb, William A., Co-Chair Philippou, A.N. (Cyprus), Co-Chair Burke, John Ando, S. (Japan) DeTemple, Duane W.
This volume of proceedings is an offspring of the special semester Ergodic Theory, Geometric Rigidity and Number Theory which was held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from Jan uary until July, 2000. Beside the activities during the semester, there were workshops held in January, March and July, the first being of introductory nature with five short courses delivered over a week. Although the quality of the workshops was excellent throughout the semester, the idea of these proceedings came about during the March workshop, which is hence more prominently represented, The format of the volume has undergone many changes, but what has remained untouched is the enthusiasm of the contributors since the onset of the project: suffice it to say that even though only two months elapsed between the time we contacted the potential authors and the deadline to submit the papers, the deadline was respected in the vast majority of the cases. The scope of the papers is not completely uniform throughout the volume, although there are some points in common. We asked the authors to write papers keeping in mind the idea that they should be accessible to students. At the same time, we wanted the papers not to be a summary of results that appeared somewhere else."
On April 25-27, 1989, over a hundred mathematicians, including eleven from abroad, gathered at the University of Illinois Conference Center at Allerton Park for a major conference on analytic number theory. The occa sion marked the seventieth birthday and impending (official) retirement of Paul T. Bateman, a prominent number theorist and member of the mathe matics faculty at the University of Illinois for almost forty years. For fifteen of these years, he served as head of the mathematics department. The conference featured a total of fifty-four talks, including ten in vited lectures by H. Delange, P. Erdos, H. Iwaniec, M. Knopp, M. Mendes France, H. L. Montgomery, C. Pomerance, W. Schmidt, H. Stark, and R. C. Vaughan. This volume represents the contents of thirty of these talks as well as two further contributions. The papers span a wide range of topics in number theory, with a majority in analytic number theory."
In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there."
During the academic year 1980-1981 I was teaching at the Technion-the Israeli Institute of Technology-in Haifa. The audience was small, but con sisted of particularly gifted and eager listeners; unfortunately, their back ground varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the inten tion of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience. A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the Encyclopedia of Mathematical Sciences under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be."
On May 16 -20, 1995, approximately 150 mathematicians gathered at the Conference Center of the University of Illinois at Allerton Park for an Inter national Conference on Analytic Number Theory. The meeting marked the approaching official retirement of Heini Halberstam from the mathematics fac ulty of the University of Illinois at Urbana-Champaign. Professor Halberstam has been at the University since 1980, for 8 years as head of the Department of Mathematics, and has been a leading researcher and teacher in number theory for over forty years. The program included invited one hour lectures by G. Andrews, J. Bour gain, J. M. Deshouillers, H. Halberstam, D. R. Heath-Brown, H. Iwaniec, H. L. Montgomery, R. Murty, C. Pomerance, and R. C. Vaughan, and almost one hundred other talks of varying lengths. These volumes comprise contributions from most of the principal speakers and from many of the other participants, as well as some papers from mathematicians who were unable to attend. The contents span a broad range of themes from contemporary number theory, with the majority having an analytic flavor."
N atur non facit saltus? This book is devoted to the fundamental problem which arises contin uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom."
Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincare summation process, which consists in building automorphic distributions as series of "g"-transforms, for "g E SL"(2";"Z), of some initial function, say in "S"(R2), is analyzed in detail. On, a large class of new automorphic functions or measures is built in the same way: one of its features lies in an interpretation, as a spectral density, of the restriction of the zeta function to any line within the critical strip. The book is addressed to a wide audience of advanced graduate students and researchers working in analytic number theory or pseudo-differential analysis."
Number theory is a branch of mathematics which draws its vitality from a rich historical background. It is also traditionally nourished through interactions with other areas of research, such as algebra, algebraic geometry, topology, complex analysis and harmonic analysis. More recently, it has made a spectacular appearance in the field of theoretical computer science and in questions of communication, cryptography and error-correcting codes. Providing an elementary introduction to the central topics in number theory, this book spans multiple areas of research. The first part corresponds to an advanced undergraduate course. All of the statements given in this part are of course accompanied by their proofs, with perhaps the exception of some results appearing at the end of the chapters. A copious list of exercises, of varying difficulty, are also included here. The second part is of a higher level and is relevant for the first year of graduate school. It contains an introduction to elliptic curves and a chapter entitled "Developments and Open Problems", which introduces and brings together various themes oriented toward ongoing mathematical research. Given the multifaceted nature of number theory, the primary aims of this book are to: - provide an overview of the various forms of mathematics useful for studying numbers - demonstrate the necessity of deep and classical themes such as Gauss sums - highlight the role that arithmetic plays in modern applied mathematics - include recent proofs such as the polynomial primality algorithm - approach subjects of contemporary research such as elliptic curves - illustrate the beauty of arithmetic The prerequisites for this text are undergraduate level algebra and a little topology of Rn. It will be of use to undergraduates, graduates and phd students, and may also appeal to professional mathematicians as a reference text.
Complex analysis is a classic and central area of mathematics, which is studies and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much-awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter.
"Numerical Semigroups" is the first monograph devoted exclusively to the development of the theory of numerical semigroups. This concise, self-contained text is accessible to first year graduate students, giving the full background needed for readers unfamiliar with the topic. Researchers will find the tools presented useful in producing examples and counterexamples in other fields such as algebraic geometry, number theory, and linear programming.
During the years 1903-1914, Ramanujan recorded many of his mathematical discoveries in notebooks without providing proofs. Although many of his results were already in the literature, more were not. Almost a decade after Ramanujan's death in 1920, G.N. Watson and B.M. Wilson began to edit his notebooks but never completed the task. A photostat edition, with no editing, was published by the Tata Institute of Fundamental Research in Bombay in 1957. This book is the second of four volumes devoted to the editing of Ramanujan's Notebooks. Part I, published in 1985, contains an account of Chapters 1-9 in the second notebook as well as a description of Ramanujan's quarterly reports. In this volume, we examine Chapters 10-15 in Ramanujan's second notebook. If a result is known, we provide references in the literature where proofs may be found; if a result is not known, we attempt to prove it. Not only are the results fascinating, but, for the most part, Ramanujan's methods remain a mystery. Much work still needs to be done. We hope readers will strive to discover Ramanujan's thoughts and further develop his beautiful ideas.
This monograph brings together a collection of results on the non-vanishing of- functions.Thepresentation, thoughbasedlargelyontheoriginalpapers, issuitable forindependentstudy.Anumberofexerciseshavealsobeenprovidedtoaidinthis endeavour. The exercises are of varying di?culty and those which require more e?ort have been marked with an asterisk. The authors would like to thank the Institut d'Estudis Catalans for their encouragementof thiswork throughtheFerranSunyeriBalaguerPrize.Wewould also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty xi Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The dist- bution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical t- orems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s)=1. In the 1950's, a new theme was introduced by Birch and Swinnerton-Dyer. Given an elliptic curve E over a number ?eld K of ?nite degree over Q, they associated an L-function to E and conjectured that this L-function extends to an entire function and has a zero at s = 1 of order equal to the Z-rank of the group of K-rational points of E. In particular, the L-function vanishes at s=1ifand only if E has in?nitely many K-rational points.
The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation." The chapters are grouped in "parts." There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials," since using the language of algebraic geometry would have led me too far astray."
Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the Andre-Oort and Zilber-Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.
In this volume we study the value distribution of arithmetic functions, allowing unbounded renormalisations. The methods involve a synthesis of Probability and Number Theory; sums of independent infinitesimal random variables playing an important role. A central problem is to decide when an additive arithmetic function fin) admits a renormalisation by real functions a(x) and {3(x) > 0 so that asx ~ 00 the frequencies vx(n;f (n) - a(x) :s;; z {3 (x) ) converge weakly; (see Notation). In contrast to volume one we allow {3(x) to become unbounded with x. In particular, we investigate to what extent one can simulate the behaviour of additive arithmetic functions by that of sums of suit ably defined independent random variables. This fruiful point of view was intro duced in a 1939 paper of Erdos and Kac. We obtain their (now classical) result in Chapter 12. Subsequent methods involve both Fourier analysis on the line, and the appli cation of Dirichlet series. Many additional topics are considered. We mention only: a problem of Hardy and Ramanujan; local properties of additive arithmetic functions; the rate of convergence of certain arithmetic frequencies to the normal law; the arithmetic simulation of all stable laws. As in Volume I the historical background of various results is discussed, forming an integral part of the text. In Chapters 12 and 19 these considerations are quite extensive, and an author often speaks for himself. |
![]() ![]() You may like...
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
Quantum Boundaries of Life, Volume 82
Roman R. Poznanski, Erkki J. Brandas
Hardcover
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
Provenance in Data Science - From Data…
Leslie F Sikos, Oshani W. Seneviratne, …
Hardcover
R3,890
Discovery Miles 38 900
Applications of Advanced Computing in…
Rajesh Kumar, R. K. Dohare, …
Hardcover
R4,396
Discovery Miles 43 960
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, …
Hardcover
R7,203
Discovery Miles 72 030
|