0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (53)
  • R250 - R500 (68)
  • R500+ (1,780)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory

Algebraic Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 1999): Jurgen Neukirch Algebraic Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Jurgen Neukirch; Translated by Norbert Schappacher
R4,436 Discovery Miles 44 360 Ships in 10 - 15 working days

This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.

Algebras and Orders (Paperback, Softcover reprint of hardcover 1st ed. 1993): Ivo G. Rosenberg, Gert Sabidussi Algebras and Orders (Paperback, Softcover reprint of hardcover 1st ed. 1993)
Ivo G. Rosenberg, Gert Sabidussi
R13,771 Discovery Miles 137 710 Ships in 10 - 15 working days

In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started by extending results from these fields but by now it is a well-established and dynamic discipline in its own right. One of the objectives of the ASI was to cover a broad spectrum of topics in this field, and to put in evidence the natural links to, and interactions with, boolean algebra, lattice theory, topology, graphs, relations, automata, theoretical computer science and (partial) orders. The theory of orders is a relatively young and vigorous discipline sharing certain topics as well as many researchers and meetings with universal algebra and lattice theory. W. Taylor surveyed the abstract clone theory which formalizes the process of compos ing operations (i.e., the formation of term operations) of an algebra as a special category with countably many objects, and leading naturally to the interpretation and equivalence of varieties."

p-Adic Valued Distributions in Mathematical Physics (Paperback, Softcover reprint of hardcover 1st ed. 1994): Andrei Y.... p-Adic Valued Distributions in Mathematical Physics (Paperback, Softcover reprint of hardcover 1st ed. 1994)
Andrei Y. Khrennikov
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I* We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo* These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.

Limit Theorems for the Riemann Zeta-Function (Paperback, Softcover reprint of hardcover 1st ed. 1996): Antanas Laurincikas Limit Theorems for the Riemann Zeta-Function (Paperback, Softcover reprint of hardcover 1st ed. 1996)
Antanas Laurincikas
R4,603 Discovery Miles 46 030 Ships in 10 - 15 working days

The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.

Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004): N. E. Hurt Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004)
N. E. Hurt
R2,894 Discovery Miles 28 940 Ships in 10 - 15 working days

2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.

Diophantine Approximation on Linear Algebraic Groups - Transcendence Properties of the Exponential Function in Several... Diophantine Approximation on Linear Algebraic Groups - Transcendence Properties of the Exponential Function in Several Variables (Paperback, Softcover reprint of hardcover 1st ed. 2000)
Michel Waldschmidt
R2,981 Discovery Miles 29 810 Ships in 10 - 15 working days

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.

Analytic and Elementary Number Theory - A Tribute to Mathematical Legend Paul Erdos (Paperback, Softcover reprint of hardcover... Analytic and Elementary Number Theory - A Tribute to Mathematical Legend Paul Erdos (Paperback, Softcover reprint of hardcover 1st ed. 1998)
Krishnaswami Alladi, P.D.T.A. Elliott, Andrew Granville, G. Tenenbaum
R2,875 Discovery Miles 28 750 Ships in 10 - 15 working days

This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erd s, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to be stimulating.

Finite Fields: Theory and Computation - The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography... Finite Fields: Theory and Computation - The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Igor Shparlinski
R5,671 Discovery Miles 56 710 Ships in 10 - 15 working days

This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR."

Fundamentals of Diophantine Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1983): S. Lang Fundamentals of Diophantine Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1983)
S. Lang
R2,530 Discovery Miles 25 300 Ships in 10 - 15 working days

Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

The Lerch zeta-function (Paperback, 1st ed. Softcover of orig. ed. 2003): Antanas Laurincikas, Ramunas Garunkstis The Lerch zeta-function (Paperback, 1st ed. Softcover of orig. ed. 2003)
Antanas Laurincikas, Ramunas Garunkstis
R1,521 Discovery Miles 15 210 Ships in 10 - 15 working days

The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions.

The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function.

This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.

Reciprocity Laws - From Euler to Eisenstein (Paperback, Softcover reprint of hardcover 1st ed. 2000): Franz Lemmermeyer Reciprocity Laws - From Euler to Eisenstein (Paperback, Softcover reprint of hardcover 1st ed. 2000)
Franz Lemmermeyer
R4,166 Discovery Miles 41 660 Ships in 10 - 15 working days

This book covers the development of reciprocity laws, starting from conjectures of Euler and discussing the contributions of Legendre, Gauss, Dirichlet, Jacobi, and Eisenstein. Readers knowledgeable in basic algebraic number theory and Galois theory will find detailed discussions of the reciprocity laws for quadratic, cubic, quartic, sextic and octic residues, rational reciprocity laws, and Eisensteins reciprocity law. An extensive bibliography will be of interest to readers interested in the history of reciprocity laws or in the current research in this area.

Resolution of Singularities of Embedded Algebraic Surfaces (Paperback, Softcover reprint of hardcover 2nd ed. 1998): Shreeram... Resolution of Singularities of Embedded Algebraic Surfaces (Paperback, Softcover reprint of hardcover 2nd ed. 1998)
Shreeram S. Abhyankar
R2,882 Discovery Miles 28 820 Ships in 10 - 15 working days

The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Real and Complex Dynamical Systems (Paperback, Softcover reprint of hardcover 1st ed. 1995): B. Branner, Poul Hjorth Real and Complex Dynamical Systems (Paperback, Softcover reprint of hardcover 1st ed. 1995)
B. Branner, Poul Hjorth
R6,335 Discovery Miles 63 350 Ships in 10 - 15 working days

This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.

Elements of Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003): John Stillwell Elements of Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003)
John Stillwell
R1,514 Discovery Miles 15 140 Ships in 10 - 15 working days

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

Lie Groups and Lie Algebras II - Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras (Paperback,... Lie Groups and Lie Algebras II - Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras (Paperback, Softcover reprint of hardcover 1st ed. 2000)
A.L. Onishchik; Translated by J. Danskin; Contributions by B.L. Feigin; Edited by E.B. Vinberg; Contributions by D. B. Fuchs, …
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

A systematic survey of all the basic results on the theory of discrete subgroups of Lie groups, presented in a convenient form for users. The book makes the theory accessible to a wide audience, and will be a standard reference for many years to come.

Coding Theory and Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003): T. Hiramatsu, Gunter Koehler Coding Theory and Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003)
T. Hiramatsu, Gunter Koehler
R1,490 Discovery Miles 14 900 Ships in 10 - 15 working days

This book grew out of our lectures given in the Oberseminar on 'Cod ing Theory and Number Theory' at the Mathematics Institute of the Wiirzburg University in the Summer Semester, 2001. The coding the ory combines mathematical elegance and some engineering problems to an unusual degree. The major advantage of studying coding theory is the beauty of this particular combination of mathematics and engineering. In this book we wish to introduce some practical problems to the math ematician and to address these as an essential part of the development of modern number theory. The book consists of five chapters and an appendix. Chapter 1 may mostly be dropped from an introductory course of linear codes. In Chap ter 2 we discuss some relations between the number of solutions of a diagonal equation over finite fields and the weight distribution of cyclic codes. Chapter 3 begins by reviewing some basic facts from elliptic curves over finite fields and modular forms, and shows that the weight distribution of the Melas codes is represented by means of the trace of the Hecke operators acting on the space of cusp forms. Chapter 4 is a systematic study of the algebraic-geometric codes. For a long time, the study of algebraic curves over finite fields was the province of pure mathematicians. In the period 1977 - 1982, V. D. Goppa discovered an amazing connection between the theory of algebraic curves over fi nite fields and the theory of q-ary codes."

Number Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 1989): Richard A. Mollin Number Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 1989)
Richard A. Mollin
R13,789 Discovery Miles 137 890 Ships in 10 - 15 working days

Proceedings of the NATO Advanced Study Institute, Banff Centre, Canada, April 27-May 5, 1988

The Book of Numbers (Paperback, Softcover reprint of the original 1st ed. 1996): John H. Conway, Richard Guy The Book of Numbers (Paperback, Softcover reprint of the original 1st ed. 1996)
John H. Conway, Richard Guy
R1,409 R1,161 Discovery Miles 11 610 Save R248 (18%) Ships in 10 - 15 working days

"...the great feature of the book is that anyone can read it without excessive head scratching...You'll find plenty here to keep you occupied, amused, and informed. Buy, dip in, wallow." -IAN STEWART, NEW SCIENTIST "...a delightful look at numbers and their roles in everything from language to flowers to the imagination." -SCIENCE NEWS "...a fun and fascinating tour of numerical topics and concepts. It will have readers contemplating ideas they might never have thought were understandable or even possible." -WISCONSIN BOOKWATCH "This popularization of number theory looks like another classic." -LIBRARY JOURNAL

Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985): P.D.T.A. Elliott Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985)
P.D.T.A. Elliott
R1,575 Discovery Miles 15 750 Ships in 10 - 15 working days

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = +/- I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x". Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Hilbert Modular Forms (Paperback, 1st ed. Softcover of orig. ed. 1990): Eberhard Freitag Hilbert Modular Forms (Paperback, 1st ed. Softcover of orig. ed. 1990)
Eberhard Freitag
R1,521 Discovery Miles 15 210 Ships in 10 - 15 working days

Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra.

Classical Theory of Algebraic Numbers (Paperback, Softcover reprint of hardcover 2nd ed. 2001): Paulo Ribenboim Classical Theory of Algebraic Numbers (Paperback, Softcover reprint of hardcover 2nd ed. 2001)
Paulo Ribenboim
R2,715 Discovery Miles 27 150 Ships in 10 - 15 working days

The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

Nevanlinna's Theory of Value Distribution - The Second Main Theorem and its Error Terms (Paperback, Softcover reprint of... Nevanlinna's Theory of Value Distribution - The Second Main Theorem and its Error Terms (Paperback, Softcover reprint of hardcover 1st ed. 2001)
William Cherry, Zhuan Ye
R3,119 Discovery Miles 31 190 Ships in 10 - 15 working days

On the one hand, this monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution because the authors only assume the reader is familiar with the basics of complex analysis. On the other hand, the monograph also serves as a valuable reference for the research specialist because the authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its "number-theoretic digressions." These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.

Computational Excursions in Analysis and Number Theory (Paperback, Softcover reprint of the original 1st ed. 2002): Peter... Computational Excursions in Analysis and Number Theory (Paperback, Softcover reprint of the original 1st ed. 2002)
Peter Borwein
R2,928 Discovery Miles 29 280 Ships in 10 - 15 working days

This book is designed for a computationally intensive graduate course based around a collection of classical unsolved extremal problems for polynomials. These problems, all of which lend themselves to extensivecomputational exploration, live at the interface of analysis, combinatorics and number theory so the techniques involved are diverse.A main computational tool used is the LLL algorithm for finding small vectors in a lattice.Many exercises and open research problems are included. Indeed one aim of the book is to tempt the able reader into the rich possibilities for research in this area.Peter Borwein is Professor of Mathematics at Simon Fraser University and the Associate Director of the Centre for Experimental and Constructive Mathematics. He is also the recipient of the Mathematical Association of America's Chauvenet Prize and the Merten M. Hasse Prize for expositorywriting in mathematics.

Number Theory for Computing (Paperback, Softcover reprint of hardcover 2nd ed. 2002): M. E. Hellmann Number Theory for Computing (Paperback, Softcover reprint of hardcover 2nd ed. 2002)
M. E. Hellmann; Song Y. Yan
R1,816 Discovery Miles 18 160 Ships in 10 - 15 working days

This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.

Lectures on the Geometry of Numbers (Paperback, Softcover reprint of hardcover 1st ed. 1989): Komaravolu Chandrasekharan Lectures on the Geometry of Numbers (Paperback, Softcover reprint of hardcover 1st ed. 1989)
Komaravolu Chandrasekharan; Carl Ludwig Siegel; Assisted by Rudolf Suter, B. Friedman
R1,487 Discovery Miles 14 870 Ships in 10 - 15 working days

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Number Friends - let's write numbers
Bridget Mather-Scott Paperback R379 Discovery Miles 3 790
Combinatorial and Additive Number Theory…
Melvyn B Nathanson Hardcover R6,322 Discovery Miles 63 220
Numbers
Samuel Hiti Hardcover R575 Discovery Miles 5 750
Harmonic Analysis and Applications
Michael Th Rassias Hardcover R3,910 Discovery Miles 39 100
Topics in Complex Analysis
Joel L Schiff Hardcover R4,745 Discovery Miles 47 450
The Fibonacci Resonance and Other New…
Clive N. Menhinick Hardcover R1,507 Discovery Miles 15 070
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni Hardcover R3,407 Discovery Miles 34 070
The Math Behind the Magic - Fascinating…
Ehrhard Behrends Paperback R970 Discovery Miles 9 700
Noncommutative Geometry - A Functorial…
Igor V Nikolaev Hardcover R4,259 Discovery Miles 42 590
Fundamentals of Number Theory
Emanuel Patterson Hardcover R3,462 R3,132 Discovery Miles 31 320

 

Partners