![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2, Z)
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
Leading researchers in the field of coding theory and cryptography present their newest findings, published here for the first time following a presentation at the International Conference on Coding Theory, Cryptography and Related Areas. The authors include Tom Hoeholdt, Henning Stichtenoth, and Horacio Tapia-Recillas.
This is a 2001 account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included.
The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000.The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.
This book is an introduction to the algorithmic aspects of number theory and its applications to cryptography, with special emphasis on the RSA cryptosys-tem. It covers many of the familiar topics of elementary number theory, all with an algorithmic twist. The text also includes many interesting historical notes.
The object of the present work is a systematic statistical analysis of bilinear processes in the frequency domain. The first two chapters are devoted to the basic theory of nonlinear functions of stationary Gaussian processes, Hermite polynomials, cumulants and higher order spectra, multiple Wiener-Ito integrals and finally chaotic Wiener-Ito spectral representation of subordinated processes. There are two chapters for general nonlinear time series problems."
Introduction Model theorists have often joked in recent years that the part of mathemat- ical logic known as "pure model theory" (or stability theory), as opposed to the older and more traditional "model theory applied to algebra" , turns out to have more and more to do with other subjects ofmathematics and to yield gen- uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the "Mordell-Lang conjecture for function fields" (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge- bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence...
The National Security Agency funded a conference on Coding theory, Cryp- tography, and Number Theory (nick-named Cryptoday) at the United States Naval Academy, on October 25-27, 1998. We were very fortunate to have been able to attract talented mathematicians and cryptographers to the meeting. Unfortunately, some people couldn't make it for either scheduling or funding reasons. Some of these have been invited to contribute a paper anyway. In addition, Prof. William Tutte and Frode Weierud have been kind enough to allow the inclusion of some very interesting unpublished papers of theirs. The papers basically fall into three catagories. Historical papers on cryp- tography done during World War II (Hatch, Hilton, Tutte, Ulfving, and Weierud), mathematical papers on more recent methods in cryptography (Cosgrave, Lomonoco, Wardlaw), and mathematical papers in coding theory (Gao, Joyner, Michael, Shokranian, Shokrollahi). A brief biography of the authors follows. - Peter Hilton is a Distinguished Professor of Mathematics Emeritus at the State University of New York at Binghamton. He worked from 1941 to 1945 in the British cryptanalytic headquarters at Bletchley Park. Profes- sor Hilton has done extensive research in algebraic topology and group theory. - William Tutte is a Distinguished Professor Emeritus and an Adjunct Pro- fessor in the Combinatorics and Optimization Department at the Univer- sity of Waterloo. He worked from 1941 to 1945 in the British cryptana- lytic headquarters at Bletchley Park. Professor Tutte has done extensive research in the field of combinatorics.
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
This book constitutes the refereed proceedings of the Third International Symposium on Algorithmic Number Theory, ANTS-III, held in Portland, Oregon, USA, in June 1998.The volume presents 46 revised full papers together with two invited surveys. The papers are organized in chapters on gcd algorithms, primality, factoring, sieving, analytic number theory, cryptography, linear algebra and lattices, series and sums, algebraic number fields, class groups and fields, curves, and function fields.
This book concerns modern methods in scientific computing and linear algebra, relevant to image and signal processing. For these applications, it is important to consider ingredients such as: (1) sophisticated mathematical models of the problems, including a priori knowledge, (2) rigorous mathematical theories to understand the difficulties of solving problems which are ill-posed, and (3) fast algorithms for either real-time or data-massive computations. Such are the topics brought into focus by these proceedings of the Workshop on Scientific Computing (held in Hong Kong on March 10-12, 1997, the sixth in such series of Workshops held in Hong Kong since 1990), where the major themes were on numerical linear algebra, signal processing, and image processing.
This book contains 22 lectures presented at the final conference of the Ger man research program (Schwerpunktprogramm) Algorithmic Number The ory and Algebra 1991-1997, sponsored by the Deutsche Forschungsgemein schaft. The purpose of this research program and of the meeting was to bring together developers of computer algebra software and researchers using com putational methods to gain insight into experimental problems and theoret ical questions in algebra and number theory. The book gives an overview on algorithmic methods and on results ob tained during this period. This includes survey articles on the main research projects within the program: * algorithmic number theory emphasizing class field theory, constructive Galois theory, computational aspects of modular forms and of Drinfeld modules * computational algebraic geometry including real quantifier elimination and real algebraic geometry, and invariant theory of finite groups * computational aspects of presentations and representations of groups, especially finite groups of Lie type and their Heeke algebras, and of the isomorphism problem in group theory. Some of the articles illustrate the current state of computer algebra sys tems and program packages developed with support by the research pro gram, such as KANT and LiDIA for algebraic number theory, SINGULAR, RED LOG and INVAR for commutative algebra and invariant theory respec tively, and GAP, SYSYPHOS and CHEVIE for group theory and representation theory.
The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.
The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focus of the book are 3n+1 predecessor sets. These are analyzed using, e.g., elementary number theory, combinatorics, asymptotic analysis, and abstract measure theory. The book is written for any mathematician interested in the 3n+1 problem, and in the wealth of mathematical ideas employed to attack it.
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving.
Our grasp of numbers and uncertainty is one of humankind's most distinctive and important traits. It is pivotal to our exceptional ability to control the world around us as we make short-term choices and forecast far into the future. But very smart people can struggle with numbers in ways that pose negative consequences for their decision making. Numeric ability equips individuals with vital tools that allow them to take charge of various aspects of their life. The more numerate enjoy superior health, wealth, and employment outcomes, while the innumerate remain more vulnerable. This book presents the logic, rules, and habits that highly numerate people use in decision making. Innumeracy in the Wild also introduces two additional ways of knowing numbers that complement and compensate for lower numeric ability and explores how numeric abilities develop and where mistakes are made. It offers a state-of-the-art review of the now sizeable body of psychological and applied findings that demonstrate the critical importance of numeracy in our world. With more than two decades of experience in the decision sciences, Ellen Peters demonstrates how intervention can foster adult numeric capacity, propel people to use numeric facts in decision making, and empower those with lower numeracy to reason better.
In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more."
Semantics of Parallelism is the only book which provides a unified treatment of the non-interleaving approach to process semantics (as opposed to the interleaving approach of the process algebraists). Many results found in this book are collected for the first time outside conference and journal articles on the mathematics of non-interleaving semantics. It gives the reader a unified view of various attempts to model parallelism within one conceptual frame work. It is aimed at postgraduates in theoretical computer science and academics who are teaching and researching in the modelling of discrete, concurrent/distributed systems. Workers in the information technology industry who are interested in available theoretical studies on parallelism will also be interested in this book.
The main purpose of this book is to give an overview of the developments during the last 20 years in the theory of uniformly distributed sequences. The authors focus on various aspects such as special sequences, metric theory, geometric concepts of discrepancy, irregularities of distribution, continuous uniform distribution and uniform distribution in discrete spaces. Specific applications are presented in detail: numerical integration, spherical designs, random number generation and mathematical finance. Furthermore over 1000 references are collected and discussed. While written in the style of a research monograph, the book is readable with basic knowledge in analysis, number theory and measure theory.
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly |
You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
|