![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
Special functions, which include the trigonometric functions, have been used for centuries. Their role in the solution of differential equations was exploited by Newton and Leibniz, and the subject of special functions has been in continuous development ever since. In just the past thirty years several new special functions and applications have been discovered. This treatise presents an overview of the area of special functions, focusing primarily on the hypergeometric functions and the associated hypergeometric series. It includes both important historical results and recent developments and shows how these arise from several areas of mathematics and mathematical physics. Particular emphasis is placed on formulas that can be used in computation. The book begins with a thorough treatment of the gamma and beta functions that are essential to understanding hypergeometric functions. Later chapters discuss Bessel functions, orthogonal polynomials and transformations, the Selberg integral and its applications, spherical harmonics, q-series, partitions, and Bailey chains. This clear, authoritative work will be a lasting reference for students and researchers in number theory, algebra, combinatorics, differential equations, applied mathematics, mathematical computing, and mathematical physics.
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
Intermediate in level between an advanced textbook and a monograph, this book covers both the classical and representation theoretic views of automorphic forms in a style which is accessible to graduate students entering the field. The treatment is based on complete proofs, which reveal the uniqueness principles underlying the basic constructions. The book features extensive foundational material on the representation theory of GL(1) and GL(2) over local fields, the theory of automorphic representations, L-functions and advanced topics such as the Langlands conjectures, the Weil representation, the Rankin-Selberg method and the triple L-function, examining this subject matter from many different and complementary viewpoints. Researchers as well as students will find this a valuable guide to a notoriously difficult subject.
Beginning with a brief introduction to algorithms and diophantine equations, this volume provides a coherent modern account of the methods used to find all the solutions to certain diophantine equations, particularly those developed for use on a computer. The study is divided into three parts, emphasizing approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems that can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers interested in solving diophantine equations using computational methods.
Beginning with a brief introduction to algorithms and diophantine equations, this volume provides a coherent modern account of the methods used to find all the solutions to certain diophantine equations, particularly those developed for use on a computer. The study is divided into three parts, emphasizing approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems that can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers interested in solving diophantine equations using computational methods.
A fascinating journey into the mind-bending world of prime
numbers
This is the first of two volumes providing an introduction to modern developments in the representation theory of finite groups and associative algebras, which have transformed the subject into a study of categories of modules. Thus, Dr. Benson's unique perspective in this book incorporates homological algebra and the theory of representations of finite-dimensional algebras. This volume is primarily concerned with the exposition of the necessary background material, and the heart of the discussion is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost-split sequences are discussed in some detail.
This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.
The sixth Algorithmic Number Theory Symposium was held at the University of Vermont, in Burlington, from 13-18 June 2004. The organization was a joint e?ort of number theorists from around the world. There were four invited talks at ANTS VI, by Dan Bernstein of the Univ- sity of Illinois at Chicago, Kiran Kedlaya of MIT, Alice Silverberg of Ohio State University, and Mark Watkins of Pennsylvania State University. Thirty cont- buted talks were presented, and a poster session was held. This volume contains the written versions of the contributed talks and three of the four invited talks. (Not included is the talk by Dan Bernstein.) ANTS in Burlington is the sixth in a series that began with ANTS I in 1994 at Cornell University, Ithaca, New York, USA and continued at UniversiteB- deaux I, Bordeaux, France (1996), Reed College, Portland, Oregon, USA (1998), the University of Leiden, Leiden, The Netherlands (2000), and the University of Sydney, Sydney, Australia (2002). The proceedings have been published as volumes 877, 1122, 1423, 1838, and 2369 of Springer-Verlag's Lecture Notes in Computer Science series. The organizers of the 2004 ANTS conference express their special gratitude and thanks to John Cannon and Joe Buhler for invaluable behind-the-scenes advice."
This volume presents an authoritative, up-to-date review of analytic number theory. It contains outstanding contributions from leading international figures in this field. Core topics discussed include the theory of zeta functions, spectral theory of automorphic forms, classical problems in additive number theory such as the Goldbach conjecture, and diophantine approximations and equations. This will be a valuable book for graduates and researchers working in number theory.
Now in paperback, this classic book is addressed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction and make the user familiar with recent research in the field. New methods which have been developed for experimental number theoreticians are included along with new and important results. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup ^D*G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on ^D*G\G and its relationship with the classical automorphic forms on X, Poincaré series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2(^D*G/G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras.
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties," Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
In this stimulating book, Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, including the hitherto nebulous study of arithmetic functions. Besides its application, the book also illustrates a way of thinking mathematically: The author weaves historical background into the narrative, while variant proofs illustrate obstructions, false steps and the development of insight in a manner reminiscent of Euler. He demonstrates how to formulate theorems as well as how to construct their proofs. Elementary notions from functional analysis, Fourier analysis, functional equations, and stability in mechanics are controlled by a geometric view and synthesized to provide an arithmetical analogue of classical harmonic analysis that is powerful enough to establish arithmetic propositions previously beyond reach. Connections with other branches of analysis are illustrated by over 250 exercises, topically arranged.
This volume comprises the proceedings of the 1995 Cardiff symposium on sieve methods, exponential sums, and their applications in number theory. Included are contributions from many leading international figures in this area which encompasses the main branches of analytic number theory. In particular, many of the papers reflect the interaction between the different fields of sieve theory, Dirichlet series (including the Riemann Zeta-function), and exponential sums, whilst displaying the subtle interplay between the additive and multiplicative aspects of the subjects. The fundamental problems discussed include recent work on Waring's problem, primes in arithmetical progressions, Goldbach numbers in short intervals, the ABC conjecture, and the moments of the Riemann Zeta-function.
This book constitutes the refereed proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2003, held in Rome, Italy in September 2003. The 20 revised full papers presented were carefully reviewed and selected for inclusion in the book. All current issues surrounding the mechanization of logical reasoning with tableaux and similar methods are addressed in the context of a broad variety of logic calculi.
Since their discovery hundreds of years ago, people have been fascinated by the wondrous properties of Fibonacci numbers. Being of mathematical significance in their own right, Fibonacci numbers have had an impact on areas like art and architecture, and their traces can be found in nature and even the behavior of the stock market. Starting with the basic properties of Fibonacci numbers, the present book explores their relevance in number theory, the theory of continued fractions, geometry and approximation theory. Rather than giving a complete account of the subject, a few chosen examples are treated exhaustively. They not only reveal the bearing of Fibonacci numbers on mathematics, but also provide very readable marvels of mathematical reasoning. This book is the translation of the 6th Russian edition (the first edition appeared in the early fifties and became a standard source of information on the subject).
The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of 'Sequences' by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising from current work. The author sets out to give a coherent, essentially self-contained account of the existing theory and at the same time to bring the reader to the frontiers of research. One of the fascinations of the theory is the variety of methods applicable to it, which include Fourier analysis, group theory, high and ultra-low moments, probability and elementary inequalities, as well as several branches of number theory. This Tract is the first devoted to the subject, and will be of value to number theorists, whether they be research workers or graduate students.
The invention of ideals by Dedekind in the 1870s was well ahead of its time, and proved to be the genesis of what today we would call algebraic number theory. His memoir 'Sur la Theorie des Nombres Entiers Algebriques' first appeared in instalments in the 'Bulletin des sciences mathematiques' in 1877. This is a translation of that work by John Stillwell, who also adds a detailed introduction that gives the historical background as well as outlining the mathematical obstructions that Dedekind was striving to overcome. Dedekind's memoir gives a candid account of his development of an elegant theory as well as providing blow-by-blow comments as he wrestled with the many difficulties encountered en route. A must for all number theorists.
This book constitutes the refereed proceedings of the 5th International Algorithmic Number Theory Symposium, ANTS-V, held in Sydney, Australia, in July 2002.The 34 revised full papers presented together with 5 invited papers have gone through a thorough round of reviewing, selection and revision. The papers are organized in topical sections on number theory, arithmetic geometry, elliptic curves and CM, point counting, cryptography, function fields, discrete logarithms and factoring, Groebner bases, and complexity.
The number theoretic properties of curves of genus 2 are attracting increasing attention. This book provides new insights into this subject; much of the material here is entirely new, and none has appeared in book form before. Included is an explicit treatment of the Jacobian, which throws new light onto the geometry of the Kummer surface. The Mordell-Weil group can then be determined for many curves, and in many non-trivial cases all rational points can be found. The results exemplify the power of computer algebra in diophantine contexts, but computer expertise is not assumed in the main text. Number theorists, algebraic geometers and workers in related areas will find that this book offers unique insights into the arithmetic of curves of genus 2.
In his first book, Philosophy of Arithmetic, Edmund Husserl
provides a carefully worked out account of number as a categorial
or formal feature of the objective world, and of arithmetic as a
symbolic technique for mastering the infinite field of numbers for
knowledge. It is a realist account of numbers and number relations
that interweaves them into the basic structure of the universe and
into our knowledge of reality. It provides an answer to the
question of how arithmetic applies to reality, and gives an account
of how, in general, formalized systems of symbols work in providing
access to the world. The "appendices" to this book provide some of
Husserl's subsequent discussions of how formalisms work, involving
David Hilbert's program of completeness for arithmetic.
"Completeness" is integrated into Husserl's own problematic of the
"imaginary," and allows him to move beyond the analysis of
"representations" in his understanding of the logic of mathematics.
Dieses zweibAndige Werk handelt von Mathematik und ihrer
Geschichte. Die sorgfAltige Analyse dessen, was die Alten bewiesen
- meist sehr viel mehr, als sie ahnten -, fA1/4hrt zu einem
besseren VerstAndnis der Geschichte und zu einer guten Motivation
und einem ebenfalls besseren VerstAndnis heutiger Mathematik.
The C.I.M.E. session in Diophantine Approximation, held in Cetraro (Italy) June 28 - July 6, 2000 focused on height theory, linear independence and transcendence in group varieties, Baker's method, approximations to algebraic numbers and applications to polynomial-exponential diophantine equations and to diophantine theory of linear recurrences. Very fine lectures by D. Masser, Y. Nesterenko, H.-P. Schlickewei, W.M. Schmidt and M. Walsschmidt have resulted giving a good overview of these topics, and describing central results, both classical and recent, emphasizing the new methods and ideas of the proofs rather than the details. They are addressed to a wide audience and do not require any prior specific knowledge. |
You may like...
Into A Raging Sea - Great South African…
Tony Weaver, Andrew Ingram
Paperback
(2)R539 Discovery Miles 5 390
Ergonomics for Beginners - A Quick…
Jan Dul, Bernard Weerdmeester
Hardcover
R5,759
Discovery Miles 57 590
|