![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
In the summer quarter of 1949, I taught a ten-weeks introductory course on number theory at the University of Chicago; it was announced in the catalogue as "Alge bra 251." What made it possible, in the form which I had planned for it, was the fact that Max Rosenlicht, now of the University of California at Berkeley, was then my assistant. According to his recollection, "this was the first and last time, in the his tory of the Chicago department of mathematics, that an assistant worked for his salary." The course consisted of two lectures a week, supplemented by a weekly "laboratory period" where students were given exercises which they were. asked to solve under Max's supervision and (when necessary) with his help. This idea was borrowed from the "Praktikum" of German universi ties. Being alien to the local tradition, it did not work out as well as I had hoped, and student attendance at the problem sessions so on became desultory. v vi Weekly notes were written up by Max Rosenlicht and issued week by week to the students. Rather than a literal reproduction of the course, they should be regarded as its skeleton; they were supplemented by references to stan dard text-books on algebra. Max also contributed by far the larger part of the exercises. None of, this was meant for publication."
This book presents a self-contained introduction to H.M. Stark 's remarkable conjectures about the leading term of the Taylor expansion of Artin 's L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet 's class number formula and Kronecker 's limit formula. They provide an unexpected contribution to Hilbert 's 12th problem on the generalization of class fields by the values of transcendental functions. This volume belongs on the shelf of every mathematics library.
Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.
This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program.This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.
Auf breiter fachlicher Ebene werden in dem Lehrbuch einfache elementare zahlentheoretische Inhalte besprochen, aber auch Stoffkomplexe aus der analytischen und algebraischen Zahlentheorie dargestellt. Das Buch bietet so auf uberschaubaren mathematischen Niveau einen Einstieg in ausgewahlte Themen der Zahlentheorie. Samtliche Kapitel enthalten umfassend Beispiele, UEbungsaufgaben mit Loesungen, Abbildungen und ausfuhrlich durchgerechnete Beweise, so dass es sich sehr gut zur Prufungsvorbereitung eignet.
This is the sixth annual volume of papers based on the outstanding lectures given at the Seminaire de Theorie des Nombres de Paris. The results presented in 1985-86 by an international group of mathematicians reflect the most recent work in many areas of number theory.
Introduction to Number Theory is a classroom-tested, student-friendly text that covers a diverse array of number theory topics, from the ancient Euclidean algorithm for finding the greatest common divisor of two integers to recent developments such as cryptography, the theory of elliptic curves, and the negative solution of Hilbert's tenth problem. The authors illustrate the connections between number theory and other areas of mathematics, including algebra, analysis, and combinatorics. They also describe applications of number theory to real-world problems, such as congruences in the ISBN system, modular arithmetic and Euler's theorem in RSA encryption, and quadratic residues in the construction of tournaments. Ideal for a one- or two-semester undergraduate-level course, this Second Edition: Features a more flexible structure that offers a greater range of options for course design Adds new sections on the representations of integers and the Chinese remainder theorem Expands exercise sets to encompass a wider variety of problems, many of which relate number theory to fields outside of mathematics (e.g., music) Provides calculations for computational experimentation using SageMath, a free open-source mathematics software system, as well as Mathematica (R) and Maple (TM), online via a robust, author-maintained website Includes a solutions manual with qualifying course adoption By tackling both fundamental and advanced subjects-and using worked examples, numerous exercises, and popular software packages to ensure a practical understanding-Introduction to Number Theory, Second Edition instills a solid foundation of number theory knowledge.
This volume contains the proceedings of the 2019 Lluis A. Santalo Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24-28, 2019, at the Universidad Internacional Menendez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of zeta functions, Archimedean, $p$-adic, motivic, singularities of plane curves and their Poincare series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics. This book is published in cooperation with Real Sociedad Matematica Espanola.
Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the Andre-Oort and Zilber-Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.
From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.
Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects.
Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups. The book highlights the connection between Gauss's theory of binary forms and the arithmetic of quadratic orders. It collects essential results of the theory that have previously been difficult to access and scattered in the literature, including binary quadratic Diophantine equations and explicit continued fractions, biquadratic class group characters, the divisibility of class numbers by 16, F. Mertens' proof of Gauss's duplication theorem, and a theory of binary quadratic forms that departs from the restriction to fundamental discriminants. The book also proves Dirichlet's theorem on primes in arithmetic progressions, covers Dirichlet's class number formula, and shows that every primitive binary quadratic form represents infinitely many primes. The necessary fundamentals on algebra and elementary number theory are given in an appendix. Research on number theory has produced a wealth of interesting and beautiful results yet topics are strewn throughout the literature, the notation is far from being standardized, and a unifying approach to the different aspects is lacking. Covering both classical and recent results, this book unifies the theory of continued fractions, quadratic orders, binary quadratic forms, and class groups based on the concept of a quadratic irrational.
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of "diamonds," which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
As the open-source and free alternative to expensive software like MapleTM, MathematicaR, and MATLABR, Sage offers anyone with a web browser the ability to use cutting-edge mathematical software and share the results with others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students during Calculus II, Multivariate Calculus, Differential Equations, Linear Algebra, Math Modeling, or Operations Research. This book assumes no background in programming, but the reader who finishes the book will have learned about 60 percent of a first semester computer science course, including much of the Python programming language. The audience is not only math majors, but also physics, engineering, environmental science, finance, chemistry, economics, data science, and computer science majors. Many of the book's examples are drawn from those fields. Filled with ""challenges"" for the students to test their progress, the book is also ideal for self-study. What's New in the Second Edition: In 2019, Sage transitioned from Python 2 to Python 3, which changed the syntax in several significant ways, including for the print command. All the examples in this book have been rewritten to be compatible with Python 3. Moreover, every code block longer than four lines has been placed in an archive on the book's website http://www.sage-for-undergraduates.org that is maintained by the author, so that the students won't have to retype the code! Other additions include: The number of ""challenges"" for the students to test their own progress in learning Sage has roughly doubled, which will be a great boon for self-study. There's approximately 150 pages of new content, including: New projects on Leontief Input-Output Analysis and on Environmental ScienceNew sections about Complex Numbers and Complex Analysis, on SageTex, and on solving problems via Monte-Carlo Simulations. The first three sections of Chapter 1 have been completely rewritten to give absolute beginners a smoother transition into Sage.
"Number Theory: A Lively Introduction with Proofs, Applications, and Stories," is a new book that provides a rigorous yet accessible introduction to elementary number theory along with relevant applications. Readable discussions motivate new concepts and theorems before their formal definitions and statements are presented. Many theorems are preceded by "Numerical Proof Previews," which are numerical examples that will help give students a concrete understanding of both the statements of the theorems and the ideas behind their proofs, before the statement and proof are formalized in more abstract terms. In addition, many applications of number theory are explained in detail throughout the text, including some that have rarely (if ever) appeared in textbooks. A unique feature of the book is that every chapter includes a "math myth," a fictional story that introduces an important number theory topic in a friendly, inviting manner. Many of the exercise sets include in-depth "Explorations," in which a series of exercises develop a topic that is related to the material in the section.
The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic introduces the concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers and number theory, and primality testing. Written to be accessible to the general reader, with only high school mathematics as prerequisite, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly.
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of "diamonds," which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.
Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation.
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer-Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong's proof of Gabber's theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer-Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer-Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry. |
You may like...
Confluence of Artificial Intelligence…
Siddhartha Bhattacharyya, Jyoti Sekhar Banerjee, …
Hardcover
R4,271
Discovery Miles 42 710
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Self-Learning Optimal Control of…
Qinglai Wei, Ruizhuo Song, …
Hardcover
R3,819
Discovery Miles 38 190
Fault Detection, Supervision and Safety…
J. Chen, R.J. Patton
Paperback
R6,901
Discovery Miles 69 010
Edge-AI in Healthcare - Trends and…
Sonali Vyas, Akanksha Upadhyaya, …
Hardcover
R2,791
Discovery Miles 27 910
Mechatronics and Intelligent Systems for…
Francisco Rovira Mas, Qin Zhang, …
Hardcover
R4,274
Discovery Miles 42 740
Analysis and Synthesis for Interval…
Hongyi Li, Ligang Wu, …
Hardcover
|