![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties," Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
The C.I.M.E. session in Diophantine Approximation, held in Cetraro (Italy) June 28 - July 6, 2000 focused on height theory, linear independence and transcendence in group varieties, Baker's method, approximations to algebraic numbers and applications to polynomial-exponential diophantine equations and to diophantine theory of linear recurrences. Very fine lectures by D. Masser, Y. Nesterenko, H.-P. Schlickewei, W.M. Schmidt and M. Walsschmidt have resulted giving a good overview of these topics, and describing central results, both classical and recent, emphasizing the new methods and ideas of the proofs rather than the details. They are addressed to a wide audience and do not require any prior specific knowledge.
Since their discovery hundreds of years ago, people have been fascinated by the wondrous properties of Fibonacci numbers. Being of mathematical significance in their own right, Fibonacci numbers have had an impact on areas like art and architecture, and their traces can be found in nature and even the behavior of the stock market. Starting with the basic properties of Fibonacci numbers, the present book explores their relevance in number theory, the theory of continued fractions, geometry and approximation theory. Rather than giving a complete account of the subject, a few chosen examples are treated exhaustively. They not only reveal the bearing of Fibonacci numbers on mathematics, but also provide very readable marvels of mathematical reasoning. This book is the translation of the 6th Russian edition (the first edition appeared in the early fifties and became a standard source of information on the subject).
Dieses zweibAndige Werk handelt von Mathematik und ihrer
Geschichte. Die sorgfAltige Analyse dessen, was die Alten bewiesen
- meist sehr viel mehr, als sie ahnten -, fA1/4hrt zu einem
besseren VerstAndnis der Geschichte und zu einer guten Motivation
und einem ebenfalls besseren VerstAndnis heutiger Mathematik.
From the review: "The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." W. Kleinert in: Zentralblatt für Mathematik, 1992
This book constitutes the refereed proceedings of the 5th International Algorithmic Number Theory Symposium, ANTS-V, held in Sydney, Australia, in July 2002.The 34 revised full papers presented together with 5 invited papers have gone through a thorough round of reviewing, selection and revision. The papers are organized in topical sections on number theory, arithmetic geometry, elliptic curves and CM, point counting, cryptography, function fields, discrete logarithms and factoring, Groebner bases, and complexity.
Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.
This volume is devoted to the Brauer group of a commutative ring and related invariants. Part I presents a new self-contained exposition of the Brauer group of a commutative ring. Included is a systematic development of the theory of Grothendieck topologies and etale cohomology, and discussion of topics such as Gabber's theorem and the theory of Taylor's big Brauer group of algebras without a unit. Part II presents a systematic development of the Galois theory of Hopf algebras with special emphasis on the group of Galois objects of a cocommutative Hopf algebra. The development of the theory is carried out in such a way that the connection to the theory of the Brauer group in Part I is made clear. Recent developments are considered and examples are included. The Brauer-Long group of a Hopf algebra over a commutative ring is discussed in Part III. This provides a link between the first two parts of the volume and is the first time this topic has been discussed in a monograph. Audience: Researchers whose work involves group theory. The first two parts, in particular, can be recommended for supplementary, graduate course use. "
Dieses zweibAndige Werk handelt von Mathematik und ihrer
Geschichte. Die sorgfAltige Analyse dessen, was die Alten bewiesen
- meist sehr viel mehr, als sie ahnten -, fA1/4hrt zu einem
besseren VerstAndnis der Geschichte und zu einer guten Motivation
und einem ebenfalls besseren VerstAndnis heutiger Mathematik.
Approach your problems from It isn't that they can't see the the right end and begin with the solution. It is that they can't see the problem. answers. Then, one day, perhaps you will find the final question. The Hermit Clad in Crane Feathers' G. K. Chesterton, The scandal of in R. Van Gulik's The Chinese Maze Father Brown "The point ofa pin" Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.
It isn't that they can't see the solution. It is Approach your problems from the right end and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. O. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Oulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not' grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory arid the struc ture of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems," "chaos, synergetics and large-5cale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics. This program, Mathematics and Its Applications, is devoted to such (new) interrelations as exampla gratia: - a central concept which plays an important role in several different mathe matical and/or scientific specialized areas; - new applications of the results and ideas from one area of scientific en deavor into another; - influences which the results, problems and concepts of one field of enquiry have and have had on the development of another."
This book represents the refereed proceedings of the Fourth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at Hong Kong Baptist University in 2000. An important feature are invited surveys of the state-of-the-art in key areas such as multidimensional numerical integration, low-discrepancy point sets, random number generation, and applications of Monte Carlo and quasi-Monte Carlo methods. These proceedings include also carefully selected contributed papers on all aspects of Monte Carlo and quasi-Monte Carlo methods. The reader will be informed about current research in this very active field.
From the reviews: "...a fine book ... treats algebraic number theory from the valuation-theoretic viewpoint. When it appeared in 1949 it was a pioneer. Now there are plenty of competing accounts. But Hasse has something extra to offer. This is not surprising, for it was he who inaugurated the local-global principle (universally called the Hasse principle). This doctrine asserts that one should first study a problem in algebraic number theory locally, that is, at the completion of a vaulation. Then ask for a miracle: that global validity is equivalent to local validity. Hasse proved that miracles do happen in his five beautiful papers on quadratic forms of 1923-1924. ... The exposition is discursive. ... It is trite but true: Every number-theorist should have this book on his or her shelf." (Irving Kaplansky in Bulletin of the American Mathematical Society, 1981)
It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld, su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O, the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws, weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties
This book contains seventeen contributions made to George Andrews on the occasion of his sixtieth birthday, ranging from classical number theory (the theory of partitions) to classical and algebraic combinatorics. Most of the papers were read at the 42nd session of the Séminaire Lotharingien de Combinatoire that took place at Maratea, Basilicata, in August 1998.This volume contains a long memoir on Ramanujan's Unpublished Manuscript and the Tau functions studied with a contemporary eye, together with several papers dealing with the theory of partitions. There is also a description of a maple package to deal with general q-calculus. More subjects on algebraic combinatorics are developed, especially the theory of Kostka polynomials, the ice square model, the combinatorial theory of classical numbers, a new approach to determinant calculus.
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e DEGREES(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the s
Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2, Z)
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000.The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book. |
![]() ![]() You may like...
George E. Andrews 80 Years of…
Krishnaswami Alladi, Bruce C. Berndt, …
Hardcover
R3,865
Discovery Miles 38 650
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,831
Discovery Miles 18 310
Linear Algebra - Algorithms…
Richard Bronson, Gabriel B Costa, …
Paperback
|