![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This book discusses special properties of integer sequences from a unique point of view. It generalizes common, well-known properties and connects them with sequences such as divisible sequences, Lucas sequences, Lehmer sequences, periods of sequences, lifting properties, and so on. The book presents theories derived by using elementary means and includes results not usually found in common number theory books. Considering the impact and usefulness of these theorems, the book also aims at being valuable for Olympiad level problem solving as well as regular research. This book will be of interest to students, researchers and faculty members alike.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet.Teil IV des Springer-Handbuchs enthalt die folgenden Zusatzkapitel zum Springer-Taschenbuch: Hohere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitatstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krummung und Analysis.
This book offers a unique account on the life and works of Srinivasa Ramanujan-often hailed as the greatest "natural" mathematical genius. Sharing valuable insights into the many stages of Ramanujan's life, this book provides glimpses into his prolific research on highly composite numbers, partitions, continued fractions, mock theta functions, arithmetic, and hypergeometric functions which led the author to discover a new summation theorem. It also includes the list of Ramanujan's collected papers, letters and other material present at the Wren Library, Trinity College in Cambridge, UK. This book is a valuable resource for all readers interested in Ramanujan's life, work and indelible contributions to mathematics.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China. While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more. This book is suitable for any student with a special interest in developing problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil I des Springer-Handbuchs enthalt neben dem einfuhrenden Kapitel und dem Kapitel 1 des Springer-Taschenbuchs zusatzliches Material zur hoheren komplexen Funktionentheorie und zur allgemeinen Theorie der partiellen Differentialgleichungen.
This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and interference alignment. The book is edited by experts working in number theory and communication theory. It thus provides unique insight into key concepts, cutting-edge results, and modern techniques that play an essential role in contemporary research. Great effort has been made to present the material in a manner that is accessible to new researchers, including PhD students. The book will also be essential reading for established researchers working in number theory or wireless communications looking to broaden their outlook and contribute to this emerging interdisciplinary area.
Robert Langlands formulated his celebrated conjectures, initiating the Langlands Program, at the age of 31, profoundly changing the landscape of mathematics. Langlands, recipient of the Abel Prize, is famous for his insight in discovering links among seemingly dissimilar objects, leading to astounding results. This book is uniquely designed to serve a wide range of mathematicians and advanced students, showcasing Langlands' unique creativity and guiding readers through the areas of Langlands' work that are generally regarded as technical and difficult to penetrate. Part 1 features non-technical personal reflections, including Langlands' own words describing how and why he was led to formulate his conjectures. Part 2 includes survey articles of Langlands' early work that led to his conjectures, and centers on his principle of functoriality and foundational work on the Eisenstein series, and is accessible to mathematicians from other fields. Part 3 describes some of Langlands' contributions to mathematical physics.
Mahler measure, a height function for polynomials, is the central theme of this book. It has many interesting properties, obtained by algebraic, analytic and combinatorial methods. It is the subject of several longstanding unsolved questions, such as Lehmer's Problem (1933) and Boyd's Conjecture (1981). This book contains a wide range of results on Mahler measure. Some of the results are very recent, such as Dimitrov's proof of the Schinzel-Zassenhaus Conjecture. Other known results are included with new, streamlined proofs. Robinson's Conjectures (1965) for cyclotomic integers, and their associated Cassels height function, are also discussed, for the first time in a book.One way to study algebraic integers is to associate them with combinatorial objects, such as integer matrices. In some of these combinatorial settings the analogues of several notorious open problems have been solved, and the book sets out this recent work. Many Mahler measure results are proved for restricted sets of polynomials, such as for totally real polynomials, and reciprocal polynomials of integer symmetric as well as symmetrizable matrices. For reference, the book includes appendices providing necessary background from algebraic number theory, graph theory, and other prerequisites, along with tables of one- and two-variable integer polynomials with small Mahler measure. All theorems are well motivated and presented in an accessible way. Numerous exercises at various levels are given, including some for computer programming. A wide range of stimulating open problems is also included. At the end of each chapter there is a glossary of newly introduced concepts and definitions. Around the Unit Circle is written in a friendly, lucid, enjoyable style, without sacrificing mathematical rigour. It is intended for lecture courses at the graduate level, and will also be a valuable reference for researchers interested in Mahler measure. Essentially self-contained, this textbook should also be accessible to well-prepared upper-level undergraduates.
This book is an attempt to describe the gradual development of the major schools of research on number theory in South India, Punjab, Mumbai, Bengal, and Bihar-including the establishment of Tata Institute of Fundamental Research (TIFR), Mumbai, a landmark event in the history of research of number theory in India. Research on number theory in India during modern times started with the advent of the iconic genius Srinivasa Ramanujan, inspiring mathematicians around the world. This book discusses the national and international impact of the research made by Indian number theorists. It also includes a carefully compiled, comprehensive bibliography of major 20th century Indian number theorists making this book important from the standpoint of historic documentation and a valuable resource for researchers of the field for their literature survey. This book also briefly discusses the importance of number theory in the modern world of mathematics, including applications of the results developed by indigenous number theorists in practical fields. Since the book is written from the viewpoint of the history of science, technical jargon and mathematical expressions have been avoided as much as possible.
This book presents a printed testimony for the fact that George Andrews, one of the world's leading experts in partitions and q-series for the last several decades, has passed the milestone age of 80. To honor George Andrews on this occasion, the conference "Combinatory Analysis 2018" was organized at the Pennsylvania State University from June 21 to 24, 2018. This volume comprises the original articles from the Special Issue "Combinatory Analysis 2018 - In Honor of George Andrews' 80th Birthday" resulting from the conference and published in Annals of Combinatorics. In addition to the 37 articles of the Andrews 80 Special Issue, the book includes two new papers. These research contributions explore new grounds and present new achievements, research trends, and problems in the area. The volume is complemented by three special personal contributions: "The Worlds of George Andrews, a daughter's take" by Amy Alznauer, "My association and collaboration with George Andrews" by Krishna Alladi, and "Ramanujan, his Lost Notebook, its importance" by Bruce Berndt. Another aspect which gives this Andrews volume a truly unique character is the "Photos" collection. In addition to pictures taken at "Combinatory Analysis 2018", the editors selected a variety of photos, many of them not available elsewhere: "Andrews in Austria", "Andrews in China", "Andrews in Florida", "Andrews in Illinois", and "Andrews in India". This volume will be of interest to researchers, PhD students, and interested practitioners working in the area of Combinatory Analysis, q-Series, and related fields.
The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard's theorems, Riemann-Zeta function, Dirichlet theorem, gamma function and harmonic functions.
This textbook is a practical yet in depth guide to cryptography and its principles and practices. The book places cryptography in real-world security situations using the hands-on information contained throughout the chapters. Prolific author Dr. Chuck Easttom lays out essential math skills and fully explains how to implement cryptographic algorithms in today's data protection landscape. Readers learn and test out how to use ciphers and hashes, generate random keys, handle VPN and Wi-Fi security, and encrypt VoIP, Email, and Web communications. The book also covers cryptanalysis, steganography, and cryptographic backdoors and includes a description of quantum computing and its impact on cryptography. This book is meant for those without a strong mathematics background _ only just enough math to understand the algorithms given. The book contains a slide presentation, questions and answers, and exercises throughout. Presents a comprehensive coverage of cryptography in an approachable format; Covers the basic math needed for cryptography _ number theory, discrete math, and algebra (abstract and linear); Includes a full suite of classroom materials including exercises, Q&A, and examples.
This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montreal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax-Schanuel conjecture for variations of Hodge structures; A broad introduction to the theory of orbifold pairs and Campana's conjectures, with a special emphasis on the arithmetic perspective; A systematic presentation and comparison between different notions of hyperbolicity, as an introduction to the Lang-Vojta conjectures in the projective case; An exploration of hyperbolicity and the Lang-Vojta conjectures in the general case of quasi-projective varieties. Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces is an ideal resource for graduate students and researchers in number theory, complex algebraic geometry, and arithmetic geometry. A basic course in algebraic geometry is assumed, along with some familiarity with the vocabulary of algebraic number theory.
Ce travail en deux volumes donne la preuve de la stabilisation de la formule des trace tordue. Stabiliser la formule des traces tordue est la methode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adeliques d'un groupe reductif, tordue par un automorphisme, sur les formes automorphes de carre integrable de ce groupe. Cette comprehension se fait en reduisant le probleme, suivant les idees de Langlands, a des groupes plus petits munis d'un certain nombre de donnees auxiliaires; c'est ce que l'on appelle les donnees endoscopiques. L'analogue non tordu a ete resolu par J. Arthur et dans ce livre on suit la strategie de celui-ci. Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la theorie de l'endoscopie tordue developpee par R. Kottwitz et D. Shelstad et par J.-P. Labesse. Ils donnent tous les arguments des demonstrations meme si nombre d'entre eux se tr ouvent deja dans les travaux d'Arthur concernant le cas de la formule des traces non tordue. Ce travail permet de rendre inconditionnelle la classification que J. Arthur a donnee des formes automorphes de carre integrable pour les groupes classiques quasi-deployes, c'etait pour les auteurs une des principales motivations pour l'ecrire. Cette partie contient les preuves de la stabilisation geometrique et de la partie spectrale en particulier de la partie discrete de ce terme, ce qui est le point d'aboutissement de ce sujet.
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
This self-contained text presents state-of-the-art results on recurrent sequences and their applications in algebra, number theory, geometry of the complex plane and discrete mathematics. It is designed to appeal to a wide readership, ranging from scholars and academics, to undergraduate students, or advanced high school and college students training for competitions. The content of the book is very recent, and focuses on areas where significant research is currently taking place. Among the new approaches promoted in this book, the authors highlight the visualization of some recurrences in the complex plane, the concurrent use of algebraic, arithmetic, and trigonometric perspectives on classical number sequences, and links to many applications. It contains techniques which are fundamental in other areas of math and encourages further research on the topic. The introductory chapters only require good understanding of college algebra, complex numbers, analysis and basic combinatorics. For Chapters 3, 4 and 6 the prerequisites include number theory, linear algebra and complex analysis. The first part of the book presents key theoretical elements required for a good understanding of the topic. The exposition moves on to to fundamental results and key examples of recurrences and their properties. The geometry of linear recurrences in the complex plane is presented in detail through numerous diagrams, which lead to often unexpected connections to combinatorics, number theory, integer sequences, and random number generation. The second part of the book presents a collection of 123 problems with full solutions, illustrating the wide range of topics where recurrent sequences can be found. This material is ideal for consolidating the theoretical knowledge and for preparing students for Olympiads.
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on 'Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects' and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank's contribution gives an overview of the use of etale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Ostvaer, based in part on the Nelder Fellow lecture series by Ostvaer, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
This book explores various properties of quasimodular forms, especially their connections with Jacobi-like forms and automorphic pseudodifferential operators. The material that is essential to the subject is presented in sufficient detail, including necessary background on pseudodifferential operators, Lie algebras, etc., to make it accessible also to non-specialists. The book also covers a sufficiently broad range of illustrations of how the main themes of the book have occurred in various parts of mathematics to make it attractive to a wider audience. The book is intended for researchers and graduate students in number theory.
This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23-April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.
This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions. The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication.
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students. |
You may like...
Recent Studies on Risk Analysis and…
Teresa A Oliveira, Christos P. Kitsos, …
Hardcover
R3,391
Discovery Miles 33 910
Perceived Safety - A Multidisciplinary…
Martina Raue, Bernhard Streicher, …
Hardcover
R3,332
Discovery Miles 33 320
|