![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How ever, the presentation is more sophisticated than might be considered appropri ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. However, some experienced mathematicians consider that no introduction is complete without a discussion of rigid body mechanics. Conventional accounts of the subject invariably include such a discussion, but with the problems restricted to two-dimensional ones in the books which claim to be elementary. The mechanics of rigid bodies is therefore included but there is no separate discussion of the theory in two dimensions."
This is a collection of research-oriented monographs, reports, and notes arising from lectures and seminars on the Weil representation, the Maslov index, and the Theta series. It is good contribution to the international scientific community, particularly for researchers and graduate students in the field.
In the summer quarter of 1949, I taught a ten-weeks introductory course on number theory at the University of Chicago; it was announced in the catalogue as "Alge bra 251." What made it possible, in the form which I had planned for it, was the fact that Max Rosenlicht, now of the University of California at Berkeley, was then my assistant. According to his recollection, "this was the first and last time, in the his tory of the Chicago department of mathematics, that an assistant worked for his salary." The course consisted of two lectures a week, supplemented by a weekly "laboratory period" where students were given exercises which they were. asked to solve under Max's supervision and (when necessary) with his help. This idea was borrowed from the "Praktikum" of German universi ties. Being alien to the local tradition, it did not work out as well as I had hoped, and student attendance at the problem sessions so on became desultory. v vi Weekly notes were written up by Max Rosenlicht and issued week by week to the students. Rather than a literal reproduction of the course, they should be regarded as its skeleton; they were supplemented by references to stan dard text-books on algebra. Max also contributed by far the larger part of the exercises. None of, this was meant for publication."
This book presents a self-contained introduction to H.M. Stark 's remarkable conjectures about the leading term of the Taylor expansion of Artin 's L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet 's class number formula and Kronecker 's limit formula. They provide an unexpected contribution to Hilbert 's 12th problem on the generalization of class fields by the values of transcendental functions. This volume belongs on the shelf of every mathematics library.
In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? And, are there really "six degrees of separation" between all pairs of people? Chamberland explores these questions and covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, the number of guards needed to protect an art gallery, problematic election results and so much more. The book's short sections can be read independently and digested in bite-sized chunks--especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on.
Auf breiter fachlicher Ebene werden in dem Lehrbuch einfache elementare zahlentheoretische Inhalte besprochen, aber auch Stoffkomplexe aus der analytischen und algebraischen Zahlentheorie dargestellt. Das Buch bietet so auf uberschaubaren mathematischen Niveau einen Einstieg in ausgewahlte Themen der Zahlentheorie. Samtliche Kapitel enthalten umfassend Beispiele, UEbungsaufgaben mit Loesungen, Abbildungen und ausfuhrlich durchgerechnete Beweise, so dass es sich sehr gut zur Prufungsvorbereitung eignet.
Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.
Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of "diamonds," which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Understanding maths has never been easier. Combining bold, elegant graphics with easy-to-understand text, Simply Maths is the perfect introduction to the subject for those who are short of time but hungry for knowledge. Covering more than 90 key mathematical concepts from prime numbers and fractions to quadratic equations and probability experiments, each pared-back, single-page entry explains the concept more clearly than ever before. Organized by major themes - number theory and systems; calculations; geometry; algebra; graphs; ratio and proportion; measurement; probability and statistics; and calculus - entries explain the essentials of each key mathematical theory with simple clarity and for ease of understanding. Whether you are studying maths at school or college, or simply want a jargon-free overview of the subject, this indispensable guide is packed with everything you need to understand the basics quickly and easily.
Lester Ford's book was the first treatise in English on automorphic functions. At the time of its publication (1929), it was welcomed for its elegant treatment of groups of linear transformations and for the remarkably clear and explicit exposition throughout the book. Ford's extraordinary talent for writing has been memorialized in the prestigious award that bears his name. The book, in the meantime, has become a recognized classic. Ford's approach is primarily through analytic function theory. The first part of the book covers groups of linear transformations, especially Fuchsian groups, fundamental domains, and functions that are invariant under the groups, including the classical elliptic modular functions and Poincare theta series. The second part of the book covers conformal mappings, uniformization, and connections between automorphic functions and differential equations with regular singular points, such as the hypergeometric equation.
Introduction to Number Theory is a classroom-tested, student-friendly text that covers a diverse array of number theory topics, from the ancient Euclidean algorithm for finding the greatest common divisor of two integers to recent developments such as cryptography, the theory of elliptic curves, and the negative solution of Hilbert's tenth problem. The authors illustrate the connections between number theory and other areas of mathematics, including algebra, analysis, and combinatorics. They also describe applications of number theory to real-world problems, such as congruences in the ISBN system, modular arithmetic and Euler's theorem in RSA encryption, and quadratic residues in the construction of tournaments. Ideal for a one- or two-semester undergraduate-level course, this Second Edition: Features a more flexible structure that offers a greater range of options for course design Adds new sections on the representations of integers and the Chinese remainder theorem Expands exercise sets to encompass a wider variety of problems, many of which relate number theory to fields outside of mathematics (e.g., music) Provides calculations for computational experimentation using SageMath, a free open-source mathematics software system, as well as Mathematica (R) and Maple (TM), online via a robust, author-maintained website Includes a solutions manual with qualifying course adoption By tackling both fundamental and advanced subjects-and using worked examples, numerous exercises, and popular software packages to ensure a practical understanding-Introduction to Number Theory, Second Edition instills a solid foundation of number theory knowledge.
This is the sixth annual volume of papers based on the outstanding lectures given at the Seminaire de Theorie des Nombres de Paris. The results presented in 1985-86 by an international group of mathematicians reflect the most recent work in many areas of number theory.
There are connections between invariant theory and modular forms since the times of Felix Klein, in the 19th century, connections between codes and lattices since the 1960's. The aim of the book is to explore the interplay between codes and modular forms. Here modular form is understood in a wide sense (Jacobi forms, Siegel forms, Hilbert forms). Codes comprises not only linear spaces over finite fields but modules over some commutative rings. The connection between codes over finite fields and lattices has been well documented since the 1970s. Due to an avalanche of results on codes over rings since the 1990's there is a need for an update at book level.
Searching for small gaps between consecutive primes is one way to approach the twin primes conjecture, one of the most celebrated unsolved problems in number theory. This book documents the remarkable developments of recent decades, whereby an upper bound on the known gap length between infinite numbers of consecutive primes has been reduced to a tractable finite size. The text is both introductory and complete: the detailed way in which results are proved is fully set out and plenty of background material is included. The reader journeys from selected historical theorems to the latest best result, exploring the contributions of a vast array of mathematicians, including Bombieri, Goldston, Motohashi, Pintz, Yildirim, Zhang, Maynard, Tao and Polymath8. The book is supported by a linked and freely-available package of computer programs. The material is suitable for graduate students and of interest to any mathematician curious about recent breakthroughs in the field.
From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.
Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects.
Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups. The book highlights the connection between Gauss's theory of binary forms and the arithmetic of quadratic orders. It collects essential results of the theory that have previously been difficult to access and scattered in the literature, including binary quadratic Diophantine equations and explicit continued fractions, biquadratic class group characters, the divisibility of class numbers by 16, F. Mertens' proof of Gauss's duplication theorem, and a theory of binary quadratic forms that departs from the restriction to fundamental discriminants. The book also proves Dirichlet's theorem on primes in arithmetic progressions, covers Dirichlet's class number formula, and shows that every primitive binary quadratic form represents infinitely many primes. The necessary fundamentals on algebra and elementary number theory are given in an appendix. Research on number theory has produced a wealth of interesting and beautiful results yet topics are strewn throughout the literature, the notation is far from being standardized, and a unifying approach to the different aspects is lacking. Covering both classical and recent results, this book unifies the theory of continued fractions, quadratic orders, binary quadratic forms, and class groups based on the concept of a quadratic irrational.
This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program.This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.
Presents Book One of Euclid's Elements for students in humanities and for general readers. This treatment raises deep questions about the nature of human reason and its relation to the world. Dana Densmore's Questions for Discussion are intended as examples, to urge readers to think more carefully about what they are watching unfold, and to help them find their own questions in a genuine and exhilarating inquiry. |
![]() ![]() You may like...
Combinatorial Game Theory - A Special…
Richard J. Nowakowski, Bruce M. Landman, …
Hardcover
R6,100
Discovery Miles 61 000
Hybrid Soft Computing Models Applied to…
Muhammad Akram, Fariha Zafar
Hardcover
R4,181
Discovery Miles 41 810
Connected Dominating Set: Theory and…
Dingzhu Du, Peng-Jun Wan
Hardcover
R1,973
Discovery Miles 19 730
Complex Networks & Their Applications IX…
Rosa M. Benito, Chantal Cherifi, …
Hardcover
R8,443
Discovery Miles 84 430
Fixed Point Theory and Graph Theory…
Monther Alfuraidan, Qamrul Ansari
Hardcover
R1,973
Discovery Miles 19 730
Inverse Problems and Zero Forcing for…
Leslie Hogben, Jephian C.-H. Lin, …
Paperback
R3,217
Discovery Miles 32 170
Graphs for the Analysis of Bipolar Fuzzy…
Muhammad Akram, Musavarah Sarwar, …
Hardcover
R2,957
Discovery Miles 29 570
Complex Networks XII - Proceedings of…
Andreia Sofia Teixeira, Diogo Pacheco, …
Hardcover
R4,581
Discovery Miles 45 810
|