![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This book is intended as a teacher's manual and as an independent-study handbook for students and mathematical competitors. Based on a traditional teaching philosophy and a non-traditional writing approach (the stair-step method), this book consists of new problems with solutions created by the authors. The main idea of this approach is to start from relatively easy problems and "step-by-step" increase the level of difficulty toward effectively maximizing students' learning potential. In addition to providing solutions, a separate table of answers is also given at the end of the book. A broad view of mathematics is covered, well beyond the typical elementary level, by providing more in depth treatment of Geometry and Trigonometry, Number Theory, Algebra, Calculus, and Combinatorics.
This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
Matrix Methods: Applied Linear Algebra and Sabermetrics, Fourth Edition, provides a unique and comprehensive balance between the theory and computation of matrices. Rapid changes in technology have made this valuable overview on the application of matrices relevant not just to mathematicians, but to a broad range of other fields. Matrix methods, the essence of linear algebra, can be used to help physical scientists-- chemists, physicists, engineers, statisticians, and economists-- solve real world problems.
Introduction to Number Theory covers the essential content of an introductory number theory course including divisibility and prime factorization, congruences, and quadratic reciprocity. The instructor may also choose from a collection of additional topics. Aligning with the trend toward smaller, essential texts in mathematics, the author strives for clarity of exposition. Proof techniques and proofs are presented slowly and clearly. The book employs a versatile approach to the use of algebraic ideas. Instructors who wish to put this material into a broader context may do so, though the author introduces these concepts in a non-essential way. A final chapter discusses algebraic systems (like the Gaussian integers) presuming no previous exposure to abstract algebra. Studying general systems urges students realize unique factorization into primes is a more subtle idea than may at first appear; students will find this chapter interesting, fun and quite accessible. Applications of number theory include several sections on cryptography and other applications to further interest instructors and students alike.
Galois theory is a central part of algebra, dealing with symmetries between solutions of algebraic equations in one variable. This collection of papers brings together articles from some of the world's leading experts in this field. Topics center around the Inverse Galois Problem, comprising the full range of methods and approaches in this area, making this an invaluable resource for all those whose research involves Galois theory.
The theme of this book is the study of the distribution of integer powers modulo a prime number. It provides numerous new, sometimes quite unexpected, links between number theory and computer science as well as to other areas of mathematics. Possible applications include (but are not limited to) complexity theory, random number generation, cryptography, and coding theory. The main method discussed is based on bounds of exponential sums. Accordingly, the book contains many estimates of such sums, including new estimates of classical Gaussian sums. It also contains many open questions and proposals for further research.
The aim of this book is to provide an introduction to quadratic forms that builds from basics up to the most recent results. Professor Kitaoka is well known for his work in this area, and in this book he covers many aspects of the subject, including lattice theory, Siegel's formula, and some results involving tensor products of positive definite quadratic forms. The reader is required to have only a knowledge of algebraic number fields, making this book ideal for graduate students and researchers wishing for an insight into quadratic forms.
Beginning with a brief introduction to algorithms and diophantine equations, this volume provides a coherent modern account of the methods used to find all the solutions to certain diophantine equations, particularly those developed for use on a computer. The study is divided into three parts, emphasizing approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems that can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers interested in solving diophantine equations using computational methods.
Special functions, which include the trigonometric functions, have been used for centuries. Their role in the solution of differential equations was exploited by Newton and Leibniz, and the subject of special functions has been in continuous development ever since. In just the past thirty years several new special functions and applications have been discovered. This treatise presents an overview of the area of special functions, focusing primarily on the hypergeometric functions and the associated hypergeometric series. It includes both important historical results and recent developments and shows how these arise from several areas of mathematics and mathematical physics. Particular emphasis is placed on formulas that can be used in computation. The book begins with a thorough treatment of the gamma and beta functions that are essential to understanding hypergeometric functions. Later chapters discuss Bessel functions, orthogonal polynomials and transformations, the Selberg integral and its applications, spherical harmonics, q-series, partitions, and Bailey chains. This clear, authoritative work will be a lasting reference for students and researchers in number theory, algebra, combinatorics, differential equations, applied mathematics, mathematical computing, and mathematical physics.
Beginning with a brief introduction to algorithms and diophantine equations, this volume provides a coherent modern account of the methods used to find all the solutions to certain diophantine equations, particularly those developed for use on a computer. The study is divided into three parts, emphasizing approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems that can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers interested in solving diophantine equations using computational methods.
From the reviews: ..". The author succeeded in an excellent way to
describe the various points of view under which Class Field Theory
can be seen. ... In any case the author succeeded to write a very
readable book on these difficult themes." "Monatshefte fuer
Mathematik, 1994"
Intermediate in level between an advanced textbook and a monograph, this book covers both the classical and representation theoretic views of automorphic forms in a style which is accessible to graduate students entering the field. The treatment is based on complete proofs, which reveal the uniqueness principles underlying the basic constructions. The book features extensive foundational material on the representation theory of GL(1) and GL(2) over local fields, the theory of automorphic representations, L-functions and advanced topics such as the Langlands conjectures, the Weil representation, the Rankin-Selberg method and the triple L-function, examining this subject matter from many different and complementary viewpoints. Researchers as well as students will find this a valuable guide to a notoriously difficult subject.
This book develops the theory of partitions. Simply put, the partitions of a number are the ways of writing that number as sums of positive integers. For example, the five partitions of 4 are 4: 3+1, 2+2, 2+1+1, and 1+1+1+1. Surprisingly, such a simple matter requires some deep mathematics for its study. This book considers the many theoretical aspects of this subject, which have in turn recently found applications to statistical mechanics, computer science and other branches of mathematics. With minimal prerequisites, this book is suitable for students as well as researchers in combinatorics, analysis, and number theory.
This book aims to be a concise introduction to topics in commutative algebra, with an emphasis on worked examples and applications. It combines elegant algebraic theory with applications to number theory, problems in classical Greek geometry, and the theory of finite fields which has important uses in other branches of science. Topics covered include rings and Euclidean rings, the four-squares theorem, fields and field extensions, finite cyclic groups and finite fields. The material covered in this book prepares the way for the further study of abstract algebra, but it could also form the basis of an entire course.
This is the first of two volumes providing an introduction to modern developments in the representation theory of finite groups and associative algebras, which have transformed the subject into a study of categories of modules. Thus, Dr. Benson's unique perspective in this book incorporates homological algebra and the theory of representations of finite-dimensional algebras. This volume is primarily concerned with the exposition of the necessary background material, and the heart of the discussion is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost-split sequences are discussed in some detail.
This volume presents an authoritative, up-to-date review of analytic number theory. It contains outstanding contributions from leading international figures in this field. Core topics discussed include the theory of zeta functions, spectral theory of automorphic forms, classical problems in additive number theory such as the Goldbach conjecture, and diophantine approximations and equations. This will be a valuable book for graduates and researchers working in number theory.
Now in paperback, this classic book is addressed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction and make the user familiar with recent research in the field. New methods which have been developed for experimental number theoreticians are included along with new and important results. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.
This volume comprises the proceedings of the 1995 Cardiff symposium on sieve methods, exponential sums, and their applications in number theory. Included are contributions from many leading international figures in this area which encompasses the main branches of analytic number theory. In particular, many of the papers reflect the interaction between the different fields of sieve theory, Dirichlet series (including the Riemann Zeta-function), and exponential sums, whilst displaying the subtle interplay between the additive and multiplicative aspects of the subjects. The fundamental problems discussed include recent work on Waring's problem, primes in arithmetical progressions, Goldbach numbers in short intervals, the ABC conjecture, and the moments of the Riemann Zeta-function.
In this stimulating book, Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, including the hitherto nebulous study of arithmetic functions. Besides its application, the book also illustrates a way of thinking mathematically: The author weaves historical background into the narrative, while variant proofs illustrate obstructions, false steps and the development of insight in a manner reminiscent of Euler. He demonstrates how to formulate theorems as well as how to construct their proofs. Elementary notions from functional analysis, Fourier analysis, functional equations, and stability in mechanics are controlled by a geometric view and synthesized to provide an arithmetical analogue of classical harmonic analysis that is powerful enough to establish arithmetic propositions previously beyond reach. Connections with other branches of analysis are illustrated by over 250 exercises, topically arranged.
The theory of sets of multiples, a subject which lies at the intersection of analytic and probabilistic number theory, has seen much development since the publication of 'Sequences' by Halberstam and Roth nearly thirty years ago. The area is rich in problems, many of them still unsolved or arising from current work. The author sets out to give a coherent, essentially self-contained account of the existing theory and at the same time to bring the reader to the frontiers of research. One of the fascinations of the theory is the variety of methods applicable to it, which include Fourier analysis, group theory, high and ultra-low moments, probability and elementary inequalities, as well as several branches of number theory. This Tract is the first devoted to the subject, and will be of value to number theorists, whether they be research workers or graduate students.
The number theoretic properties of curves of genus 2 are attracting increasing attention. This book provides new insights into this subject; much of the material here is entirely new, and none has appeared in book form before. Included is an explicit treatment of the Jacobian, which throws new light onto the geometry of the Kummer surface. The Mordell-Weil group can then be determined for many curves, and in many non-trivial cases all rational points can be found. The results exemplify the power of computer algebra in diophantine contexts, but computer expertise is not assumed in the main text. Number theorists, algebraic geometers and workers in related areas will find that this book offers unique insights into the arithmetic of curves of genus 2.
Cohomology of Drinfeld Modular Varieties aims to provide an introduction to both the subject of the title and the Langlands correspondence for function fields. These varieties are the analogs for function fields of Shimura varieties over number fields. This present volume is devoted to the geometry of these varieties and to the local harmonic analysis needed to compute their cohomology. To keep the presentation as accessible as possible, the author considers the simpler case of function rather than number fields; nevertheless, many important features can still be illustrated. It will be welcomed by workers in number theory and representation theory.
This volume has grown out of lectures given by Professor Pfister over many years. The emphasis here is placed on results about quadratic forms that give rise to interconnections between number theory, algebra, algebraic geometry and topology. Topics discussed include Hilbert's 17th problem, the Tsen-Lang theory of quasi algebraically closed fields, the level of topological spaces and systems of quadratic forms over arbitrary fields. Whenever possible proofs are short and elegant, and the author's aim was to make this book as self-contained as possible. This is a gem of a book bringing together thirty years' worth of results that are certain to interest anyone whose research touches on quadratic forms.
The second edition of this undergraduate textbook is now available in paperback. Covering up-to-date as well as established material, it is the only textbook which deals with all the main areas of number theory, taught in the third year of a mathematics course. Each chapter ends with a collection of problems, and hints and sketch solutions are provided at the end of the book, together with useful tables. |
You may like...
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun
Hardcover
R4,104
Discovery Miles 41 040
Automorphic Representations and…
Dorian Goldfeld, Joseph Hundley
Hardcover
R2,734
Discovery Miles 27 340
Symmetry: Representation Theory and Its…
Roger Howe, Markus Hunziker, …
Hardcover
R3,221
Discovery Miles 32 210
|