![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. "Ergodic Theory with a view towards Number Theory" will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral theory of the group and the regularity of the averaging sets are formulated, which suffice to guarantee convergence to the ergodic mean. In particular, this approach gives a complete solution to the problem of establishing mean and pointwise ergodic theorems for the natural averages on semisimple algebraic groups and on their discrete lattice subgroups. Furthermore, an explicit quantitative rate of convergence to the ergodic mean is established in many cases. The topic of this volume lies at the intersection of several mathematical fields of fundamental importance. These include ergodic theory and dynamics of non-amenable groups, harmonic analysis on semisimple algebraic groups and their homogeneous spaces, quantitative non-Euclidean lattice point counting problems and their application to number theory, as well as equidistribution and non-commutative Diophantine approximation. Many examples and applications are provided in the text, demonstrating the usefulness of the results established.
This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois' theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.
This highly readable book aims to ease the many challenges of starting undergraduate research. It accomplishes this by presenting a diverse series of self-contained, accessible articles which include specific open problems and prepare the reader to tackle them with ample background material and references. Each article also contains a carefully selected bibliography for further reading. The content spans the breadth of mathematics, including many topics that are not normally addressed by the undergraduate curriculum (such as matroid theory, mathematical biology, and operations research), yet have few enough prerequisites that the interested student can start exploring them under the guidance of a faculty member. Whether trying to start an undergraduate thesis, embarking on a summer REU, or preparing for graduate school, this book is appropriate for a variety of students and the faculty who guide them.
"Modular Forms and Special Cycles on Shimura Curves" is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M." The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M." In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions."
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Bridging the gap between elementary number theory and the systematic study of advanced topics, A Classical Introduction to Modern Number Theory is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical development is stressed throughout, along with wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. An extensive bibliography and many challenging exercises are also included. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordell-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves.
Ce livre contient une demonstration detaillee et complete de l'existence d'un isomorphisme equivariant entre les tours p-adiques de Lubin-Tate et de Drinfeld. Le resultat est etabli en egales et inegales caracteristiques. Il y est egalement donne comme application une demonstration du fait que les cohomologies equivariantes de ces deux tours sont isomorphes, un resultat qui a des applications a l'etude de la correspondance de Langlands locale. Au cours de la preuve des rappels et des complements sont donnes sur la structure des deux espaces de modules precedents, les groupes formels p-divisibles et la geometrie analytique rigide p-adique. This book gives a complete and thorough proof of the existence of an equivariant isomorphism between Lubin-Tate and Drinfeld towers in infinite level. The result is established in equal and inequal characteristics. Moreover, the book contains as an application the proof of the equality between the equivariant cohomology of both towers, a result that has applications to the local Langlands correspondence. Along the proof background and complements are given on the structure of both moduli spaces, p-divisible formal groups and p-adic rigid analytic geometry.
Dieses essential bietet eine Einfuhrung in die modulare Arithmetik, die mit wenig Vorkenntnissen zuganglich und mit vielen Beispielen illustriert ist. Ausgehend von den ganzen Zahlen und dem Begriff der Teilbarkeit werden neue Zahlbereiche bestehend aus Restklassen modulo einer Zahl n eingefuhrt. Fur das Rechnen in diesen neuen Zahlbereichen wichtige Hilfsmittel wie der Euklidische Algorithmus, der Chinesische Restsatz und die Eulersche -Funktion werden ausfuhrlich behandelt. Als Anwendung der modularen Arithmetik werden zum Abschluss die Grundzuge des fur viele moderne Anwendungen grundlegenden RSA-Verschlusselungsverfahrens prasentiert.
"A fascinating book." -James Ryerson, New York Times Book Review A Smithsonian Best Science Book of the Year Winner of the PROSE Award for Best Book in Language & Linguistics Carved into our past and woven into our present, numbers shape our perceptions of the world far more than we think. In this sweeping account of how the invention of numbers sparked a revolution in human thought and culture, Caleb Everett draws on new discoveries in psychology, anthropology, and linguistics to reveal the many things made possible by numbers, from the concept of time to writing, agriculture, and commerce. Numbers are a tool, like the wheel, developed and refined over millennia. They allow us to grasp quantities precisely, but recent research confirms that they are not innate-and without numbers, we could not fully grasp quantities greater than three. Everett considers the number systems that have developed in different societies as he shares insights from his fascinating work with indigenous Amazonians. "This is bold, heady stuff... The breadth of research Everett covers is impressive, and allows him to develop a narrative that is both global and compelling... Numbers is eye-opening, even eye-popping." -New Scientist "A powerful and convincing case for Everett's main thesis: that numbers are neither natural nor innate to humans." -Wall Street Journal
Dieses Essential gibt eine kompakte Einfuhrung in die Dimensionstheorie. Die topologische Dimension und mehrere fraktale Dimensionen werden definiert und anhand von Beispielen erlautert. Lesende lernen grundlegende Satze uber die Dimension von kartesischen Produkten, Projektionen, Schnitten und arithmetischen Summen kennen. Weiterhin wird eine Vielfalt von Anwendungen der Dimensionstheorie in der Zahlentheorie, der Geometrie, der Analysis, den dynamischen Systemen und der Stochastik vorgestellt.
A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.
A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.
Claudia Alfes-Neumann behandelt in diesem essential Anwendungen der Theorie der Modulformen und ihre Bedeutung als grundlegende Werkzeuge in der Mathematik. Diese - zunachst rein analytisch definierten - Funktionen treten in sehr vielen Bereichen der Mathematik auf: sehr prominent in der Zahlentheorie, aber auch in der Geometrie, Kombinatorik, Darstellungstheorie und der Physik. Nach der Erlauterung notwendiger Grundlagen aus der komplexen Analysis definiert die Autorin Modulformen und zeigt einige Anwendungen in der Zahlentheorie. Des Weiteren greift sie zwei wichtige Aspekte der Theorie rund um Modulformen auf: Hecke-Operatoren und L-Funktionen von Modulformen. Den Abschluss des essentials bildet ein Ausblick auf reell-analytische Verallgemeinerungen von Modulformen, die in der aktuellen Forschung eine bedeutende Rolle spielen.
The Mahler measure is a fascinating notion and an exciting topic in contemporary mathematics, interconnecting with subjects as diverse as number theory, analysis, arithmetic geometry, special functions and random walks. This friendly and concise introduction to the Mahler measure is a valuable resource for both graduate courses and self-study. It provides the reader with the necessary background material, before presenting the recent achievements and the remaining challenges in the field. The first part introduces the univariate Mahler measure and addresses Lehmer's question, and then discusses techniques of reducing multivariate measures to hypergeometric functions. The second part touches on the novelties of the subject, especially the relation with elliptic curves, modular forms and special values of L-functions. Finally, the Appendix presents the modern definition of motivic cohomology and regulator maps, as well as Deligne-Beilinson cohomology. The text includes many exercises to test comprehension and challenge readers of all abilities.
This book seeks to describe the rapid development in recent decades of sieve methods able to detect prime numbers. The subject began with Eratosthenes in antiquity, took on new shape with Legendre's form of the sieve, was substantially reworked by Ivan M. Vinogradov and Yuri V. Linnik, but came into its own with Robert C. Vaughan and important contributions from others, notably Roger Heath-Brown and Henryk Iwaniec. Prime-Detecting Sieves breaks new ground by bringing together several different types of problems that have been tackled with modern sieve methods and by discussing the ideas common to each, in particular the use of Type I and Type II information. No other book has undertaken such a systematic treatment of prime-detecting sieves. Among the many topics Glyn Harman covers are primes in short intervals, the greatest prime factor of the sequence of shifted primes, Goldbach numbers in short intervals, the distribution of Gaussian primes, and the recent work of John Friedlander and Iwaniec on primes that are a sum of a square and a fourth power, and Heath-Brown's work on primes represented as a cube plus twice a cube. This book contains much that is accessible to beginning graduate students, yet also provides insights that will benefit established researchers.
Presents Book One of Euclid's Elements for students in humanities and for general readers. This treatment raises deep questions about the nature of human reason and its relation to the world. Dana Densmore's Questions for Discussion are intended as examples, to urge readers to think more carefully about what they are watching unfold, and to help them find their own questions in a genuine and exhilarating inquiry.
This monograph introduces two approaches to studying Siegel modular forms: the classical approach as holomorphic functions on the Siegel upper half space, and the approach via representation theory on the symplectic group. By illustrating the interconnections shared by the two, this book fills an important gap in the existing literature on modular forms. It begins by establishing the basics of the classical theory of Siegel modular forms, and then details more advanced topics. After this, much of the basic local representation theory is presented. Exercises are featured heavily throughout the volume, the solutions of which are helpfully provided in an appendix. Other topics considered include Hecke theory, Fourier coefficients, cuspidal automorphic representations, Bessel models, and integral representation. Graduate students and young researchers will find this volume particularly useful. It will also appeal to researchers in the area as a reference volume. Some knowledge of GL(2) theory is recommended, but there are a number of appendices included if the reader is not already familiar.
"Elliptic Tales" describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which may appear simple, but arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and, in the process, venture to the very frontiers of modern mathematics.
The importance of mathematics competitions has been widely
recognized for three reasons: they help to develop imaginative
capacity and thinking skills whose value far transcends
mathematics; they constitute the most effective way of discovering
and nurturing mathematical talent; and they provide a means to
combat the prevalent false image of mathematics held by high school
students, as either a fearsomely difficult or a dull and uncreative
subject. This book provides a comprehensive training resource for
competitions from local and provincial to national Olympiad level,
containing hundreds of diagrams, and graced by many light-hearted
cartoons. It features a large collection of what mathematicians
call "beautiful" problems - non-routine, provocative, fascinating,
and challenging problems, often with elegant solutions. It features
careful, systematic exposition of a selection of the most important
topics encountered in mathematics competitions, assuming little
prior knowledge. Geometry, trigonometry, mathematical induction,
inequalities, Diophantine equations, number theory, sequences and
series, the binomial theorem, and combinatorics - are all developed
in a gentle but lively manner, liberally illustrated with examples,
and consistently motivated by attractive "appetiser" problems,
whose solution appears after the relevant theory has been
expounded.
This book concentrates on the modern theory of dynamical systems and its interactions with number theory and combinatorics. The greater part begins with a course in analytic number theory and focuses on its links with ergodic theory, presenting an exhaustive account of recent research on Sarnak's conjecture on Moebius disjointness. Selected topics involving more traditional connections between number theory and dynamics are also presented, including equidistribution, homogenous dynamics, and Lagrange and Markov spectra. In addition, some dynamical and number theoretical aspects of aperiodic order, some algebraic systems, and a recent development concerning tame systems are described.
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory. |
You may like...
Borel's Methods of Summability - Theory…
Bruce L.R. Shawyer, Bruce Watson
Hardcover
R2,770
Discovery Miles 27 700
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun
Hardcover
R4,104
Discovery Miles 41 040
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
|