![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
This book is an exploration of philosophical questions about infinity. Graham Oppy examines how the infinite lurks everywhere, both in science and in our ordinary thoughts about the world. He also analyses the many puzzles and paradoxes that follow in the train of the infinite. Even simple notions, such as counting, adding and maximising present serious difficulties. Other topics examined include the nature of space and time, infinities in physical science, infinities in theories of probability and decision, the nature of part/whole relations, mathematical theories of the infinite, and infinite regression and principles of sufficient reason.
This book is an authoritative description of the various approaches to and methods in the theory of irregularities of distribution. The subject is primarily concerned with number theory, but also borders on combinatorics and probability theory. The work is in three parts. The first is concerned with the classical problem, complemented where appropriate with more recent results. In the second part, the authors study generalizations of the classical problem, pioneered by Schmidt. Here, they include chapters on the integral equation method of Schmidt and the more recent Fourier transform technique. The final part is devoted to Roth's '1/4-theorem'.
This is a systematic account of the multiplicative structure of integers, from the probabilistic point of view. The authors are especially concerned with the distribution of the divisors, which is as fundamental and important as the additive structure of the integers, and yet until now has hardly been discussed outside of the research literature. Hardy and Ramanujan initiated this area of research and it was developed by Erdos in the thirties. His work led to some deep and basic conjectures of wide application which have now essentially been settled. This book contains detailed proofs, some of which have never appeared in print before, of those conjectures that are concerned with the propinquity of divisors. Consequently it will be essential reading for all researchers in analytic number theory.
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Number theory and algebra play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields as cryptography and coding theory. This introductory book emphasizes algorithms and applications, such as cryptography and error correcting codes, and is accessible to a broad audience. The presentation alternates between theory and applications in order to motivate and illustrate the mathematics. The mathematical coverage includes the basics of number theory, abstract algebra and discrete probability theory. This edition now includes over 150 new exercises, ranging from the routine to the challenging, that flesh out the material presented in the body of the text, and which further develop the theory and present new applications. The material has also been reorganized to improve clarity of exposition and presentation. Ideal as a textbook for introductory courses in number theory and algebra, especially those geared towards computer science students.
This is an account of the proceedings of a very successful symposium of Transcendental Number Theory held in Durham in 1986. Most of the leading international specialists were present and the lectures reflected the great advances that have taken place in this area. Indeed, the evolution of transcendence into a fertile theory with numerous and widespread applications has been one of the most exciting developments of modern mathematics. The papers cover all the main branches of the subject, and include not only definitive research but valuable survey articles. The work as a whole is an important contribution to mathematics and will be of considerable influence in the further direction of transcendence theory as well as an authoritative account of its current state.
Like the intriguing Fibonacci and Lucas numbers, Catalan numbers are also ubiquitous. "They have the same delightful propensity for popping up unexpectedly, particularly in combinatorial problems," Martin Gardner wrote in Scientific American. "Indeed, the Catalan sequence is probably the most frequently encountered sequence that is still obscure enough to cause mathematicians lacking access to Sloane's Handbook of Integer Sequences to expend inordinate amounts of energy re-discovering formulas that were worked out long ago," he continued. As Gardner noted, many mathematicians may know the abc's of Catalan sequence, but not many are familiar with the myriad of their unexpected occurrences, applications, and properties; they crop up in chess boards, computer programming, and even train tracks. This book presents a clear and comprehensive introduction to one of the truly fascinating topics in mathematics. Catalan numbers are named after the Belgian mathematician Eugene Charles Catalan (1814-1894), who "discovered" them in 1838, though he was not the first person to discover them. The great Swiss mathematician Leonhard Euler (1707-1763) "discovered" them around 1756, but even before then and though his work was not known to the outside world, Chinese mathematician Antu Ming (1692?-1763) first discovered Catalan numbers about 1730. A great source of fun for both amateurs and mathematicians, they can be used by teachers and professors to generate excitement among students for exploration and intellectual curiosity and to sharpen a variety of mathematical skills and tools, such as pattern recognition, conjecturing, proof-techniques, and problem-solving techniques. This book is not intended for mathematicians only but for a much larger audience, including high school students, math and science teachers, computer scientists, and those amateurs with a modicum of mathematical curiosity. An invaluable resource book, it contains an intriguing array of applications to computer science, abstract algebra, combinatorics, geometry, graph theory, chess, and world series.
This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the Taylor-Wiles proof of Fermat's last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.
The decomposition of the space L2(G(Q)\G(A)), where G is a reductive group defined over Q and A is the ring of adeles of Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. This book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur-Selberg trace formula. To make the book reasonably self-contained, the authors also provide essential background in subjects such as: automorphic forms; Eisenstein series; Eisenstein pseudo-series, and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, the first written using contemporary terminology. It will be welcomed by number theorists, representation theorists and all whose work involves the Langlands program.
The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula. Three main steps are outlined: the first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. Finiteness results for big Selmer groups are then established. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture. As the first book on the subject, the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases.
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz's Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites. Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called "the plaid model," has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics. The book includes an extensive computer program that allows readers to explore the materials interactively and each theorem is accompanied by a computer demonstration.
This volume aims to present a straightforward and easily accessible survey of the analytic theory of quadratic forms. Written at an elementary level, the book provides a sound basis from which the reader can study advanced works and undertake original research. Roughly half a century ago C.L. Siegel discovered a new type of automorphic forms in several variables in connection with his famous work on the analytic theory of quadratic forms. Since then Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the recent arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The text is based on the author's lectures given over a number of years and is intended for a one semester graduate course, although it can serve equally well for self study . The only prerequisites are a knowledge of algebra, number theory and complex analysis.
Many areas of active research within the broad field of number theory relate to properties of polynomials, and this volume displays the most recent and most interesting work on this theme. The 2006 Number Theory and Polynomials workshop in Bristol drew together international researchers with a variety of number-theoretic interests, and the book's contents reflect the quality of the meeting. Topics covered include recent work on the Schur-Siegel-Smyth trace problem, Mahler measure and its generalisations, the merit factor problem, Barker sequences, K3-surfaces, self-inversive polynomials, Newman's inequality, algorithms for sparse polynomials, the integer transfinite diameter, divisors of polynomials, non-linear recurrence sequences, polynomial ergodic averages, and the Hansen-Mullen primitivity conjecture. With surveys and expository articles presenting the latest research, this volume is essential for graduates and researchers looking for a snapshot of current progress in polynomials and number theory.
The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.
In this stimulating book, aimed at researchers both established and budding, Peter Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, including the hitherto nebulous study of arithmetic functions. Besides its application, the book also illustrates a way of thinking mathematically: historical background is woven into the narrative, variant proofs illustrate obstructions, false steps and the development of insight, in a manner reminiscent of Euler. It is shown how to formulate theorems as well as how to construct their proofs. Elementary notions from functional analysis, Fourier analysis, functional equations and stability in mechanics are controlled by a geometric view and synthesized to provide an arithmetical analogue of classical harmonic analysis that is powerful enough to establish arithmetic propositions until now beyond reach. Connections with other branches of analysis are illustrated by over 250 exercises, structured in chains about individual topics.
This book discusses regular powers and symbolic powers of ideals from three perspectives- algebra, combinatorics and geometry - and examines the interactions between them. It invites readers to explore the evolution of the set of associated primes of higher and higher powers of an ideal and explains the evolution of ideals associated with combinatorial objects like graphs or hypergraphs in terms of the original combinatorial objects. It also addresses similar questions concerning our understanding of the Castelnuovo-Mumford regularity of powers of combinatorially defined ideals in terms of the associated combinatorial data. From a more geometric point of view, the book considers how the relations between symbolic and regular powers can be interpreted in geometrical terms. Other topics covered include aspects of Waring type problems, symbolic powers of an ideal and their invariants (e.g., the Waldschmidt constant, the resurgence), and the persistence of associated primes.
This collection of survey and research articles brings together topics at the forefront of the theory of L-functions and Galois representations. Highlighting important progress in areas such as the local Langlands programme, automorphic forms and Selmer groups, this timely volume treats some of the most exciting recent developments in the field. Included are survey articles from Khare on Serre's conjecture, Yafaev on the Andre-Oort conjecture, Emerton on his theory of Jacquet functors, Venjakob on non-commutative Iwasawa theory and Vigneras on mod p representations of GL(2) over p-adic fields. There are also research articles by: Boeckle, Buzzard, Cornut and Vatsal, Diamond, Hida, Kurihara and R. Pollack, Kisin, Nekovar, and Bertolini, Darmon and Dasgupta. Presenting the very latest research on L-functions and Galois representations, this volume is indispensable for researchers in algebraic number theory.
Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. "Ergodic Theory with a view towards Number Theory" will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Diophantine geometry has been studied by number theorists for thousands of years, since the time of Pythagoras, and has continued to be a rich area of ideas such as Fermat's Last Theorem, and most recently the ABC conjecture. This monograph is a bridge between the classical theory and modern approach via arithmetic geometry. The authors provide a clear path through the subject for graduate students and researchers. They have re-examined many results and much of the literature, and give a thorough account of several topics at a level not seen before in book form. The treatment is largely self-contained, with proofs given in full detail. Many results appear here for the first time. The book concludes with a comprehensive bibliography. It is destined to be a definitive reference on modern diophantine geometry, bringing a new standard of rigor and elegance to the field.
There are numbers of all kinds: rational, real, complex, p-adic. The p-adic numbers are less well known than the others, but they play a fundamental role in number theory and in other parts of mathematics. This elementary introduction offers a broad understanding of p-adic numbers. From the reviews: "It is perhaps the most suitable text for beginners, and I shall definitely recommend it to anyone who asks me what a p-adic number is." --THE MATHEMATICAL GAZETTE
Random matrix theory is an area of mathematics first developed by physicists interested in the energy levels of atomic nuclei, but it can also be used to describe some exotic phenomena in the number theory of elliptic curves. The purpose of this book is to illustrate this interplay of number theory and random matrices. It begins with an introduction to elliptic curves and the fundamentals of modelling by a family of random matrices, and moves on to highlight the latest research. There are expositions of current research on ranks of elliptic curves, statistical properties of families of elliptic curves and their associated L-functions and the emerging uses of random matrix theory in this field. Most of the material here had its origin in a Clay Mathematics Institute workshop on this topic at the Newton Institute in Cambridge and together these contributions provide a unique in-depth treatment of the subject.
This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions. The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel-Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin-Selberg L-functions for GL(n) x GL(m), where n + m = N. The authors carry through the entire program with an eye toward generalizations. This book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups.
This book uses finite field theory as a hook to introduce the reader to a range of ideas from algebra and number theory. It constructs all finite fields from scratch and shows that they are unique up to isomorphism. As a payoff, several combinatorial applications of finite fields are given: Sidon sets and perfect difference sets, de Bruijn sequences and a magic trick of Persi Diaconis, and the polynomial time algorithm for primality testing due to Agrawal, Kayal and Saxena. The book forms the basis for a one term intensive course with students meeting weekly for multiple lectures and a discussion session. Readers can expect to develop familiarity with ideas in algebra (groups, rings and fields), and elementary number theory, which would help with later classes where these are developed in greater detail. And they will enjoy seeing the AKS primality test application tying together the many disparate topics from the book. The pre-requisites for reading this book are minimal: familiarity with proof writing, some linear algebra, and one variable calculus is assumed. This book is aimed at incoming undergraduate students with a strong interest in mathematics or computer science.
This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory. |
![]() ![]() You may like...
Athenian Comedy in the Roman Empire
C.W. Marshall, Tom Hawkins
Hardcover
R4,588
Discovery Miles 45 880
High-Accuracy CMOS Smart Temperature…
Anton Bakker, Johan Huijsing
Hardcover
R4,420
Discovery Miles 44 200
Reading the Bible in the Middle Ages
Jinty Nelson, Damien Kempf
Hardcover
R4,587
Discovery Miles 45 870
|