![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
The area of computational cryptography is dedicated to the development of effective methods in algorithmic number theory that improve implementation of cryptosystems or further their cryptanalysis. This book is a tribute to Arjen K. Lenstra, one of the key contributors to the field, on the occasion of his 65th birthday, covering his best-known scientific achievements in the field. Students and security engineers will appreciate this no-nonsense introduction to the hard mathematical problems used in cryptography and on which cybersecurity is built, as well as the overview of recent advances on how to solve these problems from both theoretical and practical applied perspectives. Beginning with polynomials, the book moves on to the celebrated Lenstra-Lenstra-Lovasz lattice reduction algorithm, and then progresses to integer factorization and the impact of these methods to the selection of strong cryptographic keys for usage in widely used standards.
The classical circle method of Hardy and Littlewood is one of the most effective methods of additive number theory. Two examples are its success with Waring's problem and Goldbach's conjecture. In this book, Wang offers instances of generalizations of important results on diophantine equations and inequalities over rational fields to algebraic number fields. The book also contains an account of Siegel's generalized circle method and its applications to Waring's problem and additive equations and an account of Schmidt's method on diophantine equations and inequalities in several variables in algebraic number fields.
Robert Langlands formulated his celebrated conjectures, initiating the Langlands Program, at the age of 31, profoundly changing the landscape of mathematics. Langlands, recipient of the Abel Prize, is famous for his insight in discovering links among seemingly dissimilar objects, leading to astounding results. This book is uniquely designed to serve a wide range of mathematicians and advanced students, showcasing Langlands' unique creativity and guiding readers through the areas of Langlands' work that are generally regarded as technical and difficult to penetrate. Part 1 features non-technical personal reflections, including Langlands' own words describing how and why he was led to formulate his conjectures. Part 2 includes survey articles of Langlands' early work that led to his conjectures, and centers on his principle of functoriality and foundational work on the Eisenstein series, and is accessible to mathematicians from other fields. Part 3 describes some of Langlands' contributions to mathematical physics.
Searching for small gaps between consecutive primes is one way to approach the twin primes conjecture, one of the most celebrated unsolved problems in number theory. This book documents the remarkable developments of recent decades, whereby an upper bound on the known gap length between infinite numbers of consecutive primes has been reduced to a tractable finite size. The text is both introductory and complete: the detailed way in which results are proved is fully set out and plenty of background material is included. The reader journeys from selected historical theorems to the latest best result, exploring the contributions of a vast array of mathematicians, including Bombieri, Goldston, Motohashi, Pintz, Yildirim, Zhang, Maynard, Tao and Polymath8. The book is supported by a linked and freely-available package of computer programs. The material is suitable for graduate students and of interest to any mathematician curious about recent breakthroughs in the field.
The subject of this book is arithmetic algebraic geometry, an area between number theory and algebraic geometry. It is about applying geometric methods to the study of polynomial equations in rational numbers (Diophantine equations). This book represents the first complete and coherent exposition in a single volume, of both the theory and applications of torsors to rational points. Some very recent material is included. It is demonstrated that torsors provide a unified approach to several branches of the theory which were hitherto developing in parallel.
Developed from the author s popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and practitioners of cryptography in industry. Requiring no prior experience with number theory or sophisticated algebraic tools, the book covers many computational aspects of number theory and highlights important and interesting engineering applications. It first builds the foundation of computational number theory by covering the arithmetic of integers and polynomials at a very basic level. It then discusses elliptic curves, primality testing, algorithms for integer factorization, computing discrete logarithms, and methods for sparse linear systems. The text also shows how number-theoretic tools are used in cryptography and cryptanalysis. A dedicated chapter on the application of number theory in public-key cryptography incorporates recent developments in pairing-based cryptography. With an emphasis on implementation issues, the book uses the freely available number-theory calculator GP/PARI to demonstrate complex arithmetic computations. The text includes numerous examples and exercises throughout and omits lengthy proofs, making the material accessible to students and practitioners.
This book is a conference proceedings based on the 1996 Durham Symposium on "Galois representations in arithmetic algebraic geometry". The title was interpreted loosely and the symposium covered recent developments on the interface between algebraic number theory and arithmetic algebraic geometry. The book reflects this and contains a mixture of articles. Some are expositions of subjects that have received substantial recent attention: Erez on geometric trends in Galois module theory; Mazur on rational points on curves and varieties; Moonen on Shimura varieties in mixed characteristics; Rubin and Scholl on the work of Kato on the Birch-Swinnerton-Dyer conjecture; and Schneider on rigid geometry. Some are research papers by: Coleman and Mazur, Goncharov, Gross, Serre.
The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.
Understanding maths has never been easier. Combining bold, elegant graphics with easy-to-understand text, Simply Maths is the perfect introduction to the subject for those who are short of time but hungry for knowledge. Covering more than 90 key mathematical concepts from prime numbers and fractions to quadratic equations and probability experiments, each pared-back, single-page entry explains the concept more clearly than ever before. Organized by major themes - number theory and systems; calculations; geometry; algebra; graphs; ratio and proportion; measurement; probability and statistics; and calculus - entries explain the essentials of each key mathematical theory with simple clarity and for ease of understanding. Whether you are studying maths at school or college, or simply want a jargon-free overview of the subject, this indispensable guide is packed with everything you need to understand the basics quickly and easily.
This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry. Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research. These areas are interrelated with various other mathematical fields such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics. Keeping up with the fast development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura (Kyushu University) launched a series of seminars on the topic, the first of which took place on November 2009 in Kerkennah Islands, the second in Sousse on December 2011, and the third in Hammamet on December 2013. The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaboration of many teams in several corners. Many experts from both countries have been involved.
A Thorough Presentation of the Theory of Algebraic Numbers and Functions Built on a presentation of algebraic foundations Topics in (algebraic) number theory are presented in a systematic, unified and often in a original manner. Many of the topics covered are not contained in books or in accessible surveys.
This book presents several results on elliptic functions and Pi, using Jacobi's triple product identity as a tool to show suprising connections between different topics within number theory such as theta functions, Eisenstein series, the Dedekind delta function, and Ramanujan's work on Pi. The included exercises make it ideal for both classroom use and self-study.
In 1875, Elwin Bruno Christoffel introduced a special class of words on a binary alphabet linked to continued fractions which would go onto be known as Christoffel words. Some years later, Andrey Markoff published his famous theory, the now called Markoff theory. It characterized certain quadratic forms and certain real numbers by extremal inequalities. Both classes are constructed using certain natural numbers - known as Markoff numbers - and they are characterized by a certain Diophantine equality. More basically, they are constructed using certain words - essentially the Christoffel words. The link between Christoffel words and the theory of Markoff was noted by Ferdinand Frobenius in 1913, but has been neglected in recent times. Motivated by this overlooked connection, this book looks to expand on the relationship between these two areas. Part 1 focuses on the classical theory of Markoff, while Part II explores the more advanced and recent results of the theory of Christoffel words.
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat's (Pell's) equations. It also covers Fermat's factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring's problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors' examination of Ramanujan's lost notebook focuses on the mock theta functions first introduced in Ramanujan's famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan's many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume:"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."- MathSciNet Review from the first volume:"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."- Gazette of the Australian Mathematical Society
This monograph presents recent developments of the theory of algebraic dynamical systems and their applications to computer sciences, cryptography, cognitive sciences, psychology, image analysis, and numerical simulations. The most important mathematical results presented in this book are in the fields of ergodicity, p-adic numbers, and noncommutative groups. For students and researchers working on the theory of dynamical systems, algebra, number theory, measure theory, computer sciences, cryptography, and image analysis.
The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.
Discrete mathematics has been rising in prominence in the past fifty years, both as a tool with practical applications and as a source of new and interesting mathematics. The topics in discrete mathematics have become so well developed that it is easy to forget that common threads connect the different areas, and it is through discovering and using these connections that progress is often made. For over fifty years, Ron Graham has been able to illuminate some of these connections and has helped to bring the field of discrete mathematics to where it is today. To celebrate his contribution, this volume brings together many of the best researchers working in discrete mathematics, including Fan Chung, Erik D. Demaine, Persi Diaconis, Peter Frankl, Alfred W. Hales, Jeffrey C. Lagarias, Allen Knutson, Janos Pach, Carl Pomerance, N. J. A. Sloane, and of course, Ron Graham himself.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
This is a comprehensive introduction to the modular representation theory of finite groups, with an emphasis on block theory. The two volumes take into account classical results and concepts as well as some of the modern developments in the area. Volume 1 introduces the broader context, starting with general properties of finite group algebras over commutative rings, moving on to some basics in character theory and the structure theory of algebras over complete discrete valuation rings. In Volume 2, blocks of finite group algebras over complete p-local rings take centre stage, and many key results which have not appeared in a book before are treated in detail. In order to illustrate the wide range of techniques in block theory, the book concludes with chapters classifying the source algebras of blocks with cyclic and Klein four defect groups, and relating these classifications to the open conjectures that drive block theory.
This introduction to the theory of Diophantine approximation pays special regard to Schmidt's subspace theorem and to its applications to Diophantine equations and related topics. The geometric viewpoint on Diophantine equations has been adopted throughout the book. It includes a number of results, some published here for the first time in book form, and some new, as well as classical material presented in an accessible way. Graduate students and experts alike will find the book's broad approach useful for their work, and will discover new techniques and open questions to guide their research. It contains concrete examples and many exercises (ranging from the relatively simple to the much more complex), making it ideal for self-study and enabling readers to quickly grasp the essential concepts.
Starting from physical motivations and leading to practical applications, this book provides an interdisciplinary perspective on the cutting edge of ultrametric pseudodifferential equations. It shows the ways in which these equations link different fields including mathematics, engineering, and geophysics. In particular, the authors provide a detailed explanation of the geophysical applications of p-adic diffusion equations, useful when modeling the flows of liquids through porous rock. p-adic wavelets theory and p-adic pseudodifferential equations are also presented, along with their connections to mathematical physics, representation theory, the physics of disordered systems, probability, number theory, and p-adic dynamical systems. Material that was previously spread across many articles in journals of many different fields is brought together here, including recent work on the van der Put series technique. This book provides an excellent snapshot of the fascinating field of ultrametric pseudodifferential equations, including their emerging applications and currently unsolved problems.
This book contains a compendium of 25 papers published since the 1970s dealing with pi and associated topics of mathematics and computer science. The collection begins with a Foreword by Bruce Berndt. Each contribution is preceded by a brief summary of its content as well as a short key word list indicating how the content relates to others in the collection. The volume includes articles on actual computations of pi, articles on mathematical questions related to pi (e.g., "Is pi normal?"), articles presenting new and often amazing techniques for computing digits of pi (e.g., the "BBP" algorithm for pi, which permits one to compute an arbitrary binary digit of pi without needing to compute any of the digits that came before), papers presenting important fundamental mathematical results relating to pi, and papers presenting new, high-tech techniques for analyzing pi (i.e., new graphical techniques that permit one to visually see if pi and other numbers are "normal"). This volume is a companion to Pi: A Source Book whose third edition released in 2004. The present collection begins with 2 papers from 1976, published by Eugene Salamin and Richard Brent, which describe "quadratically convergent" algorithms for pi and other basic mathematical functions, derived from some mathematical work of Gauss. Bailey and Borwein hold that these two papers constitute the beginning of the modern era of computational mathematics. This time period (1970s) also corresponds with the introduction of high-performance computer systems (supercomputers), which since that time have increased relentlessly in power, by approximately a factor of 100,000,000, advancing roughly at the same rate as Moore's Law of semiconductor technology. This book may be of interest to a wide range of mathematical readers; some articles cover more advanced research questions suitable for active researchers in the field, but several are highly accessible to undergraduate mathematics students. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Continued Fractions with Applications…
L. Lorentzen, H. Waadeland
Hardcover
R1,386
Discovery Miles 13 860
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
|