![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
The book provides an introduction to modern abstract algebra and its applications. It covers all major topics of classical theory of numbers, groups, rings, fields and finite dimensional algebras. The book also provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. In particular, it considers algorithm RSA, secret sharing algorithms, Diffie-Hellman Scheme and ElGamal cryptosystem based on discrete logarithm problem. It also presents Buchberger's algorithm which is one of the important algorithms for constructing Groebner basis. Key Features: Covers all major topics of classical theory of modern abstract algebra such as groups, rings and fields and their applications. In addition it provides the introduction to the number theory, theory of finite fields, finite dimensional algebras and their applications. Provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. Presents numerous examples illustrating the theory and applications. It is also filled with a number of exercises of various difficulty. Describes in detail the construction of the Cayley-Dickson construction for finite dimensional algebras, in particular, algebras of quaternions and octonions and gives their applications in the number theory and computer graphics.
How do you remember more and forget less? How can you earn more and become more creative just by moving house? And how do you pack a car boot most efficiently? This is your shortcut to the art of the shortcut. Mathematics is full of better ways of thinking, and with over 2,000 years of knowledge to draw on, Oxford mathematician Marcus du Sautoy interrogates his passion for shortcuts in this fresh and fascinating guide. After all, shortcuts have enabled so much of human progress, whether in constructing the first cities around the Euphrates 5,000 years ago, using calculus to determine the scale of the universe or in writing today's algorithms that help us find a new life partner. As well as looking at the most useful shortcuts in history - such as measuring the circumference of the earth in 240 BC to diagrams that illustrate how modern GPS works - Marcus also looks at how you can use shortcuts in investing or how to learn a musical instrument to memory techniques. He talks to, among many, the writer Robert MacFarlane, cellist Natalie Clein and the psychologist Suzie Orbach, asking whether shortcuts are always the best idea and, if so, when they use them. With engaging puzzles and conundrums throughout to illustrate the shortcut's ability to find solutions with speed, Thinking Better offers many clever strategies for daily complex problems.
From Zero to Infinity is a combination of number lore, number history, and sparkling descriptions of the simply stated, but exceedingly difficult problems posed by the most ordinary numbers that first appeared in 1955, and has been kept in print continuously ever since. With the fifth edition, this classic has been updated to report on advances in number theory over the last 50 years, including the proof of Fermat's Last Theorem. Deceptively simple in style and structure, it is a book to which the reader will return again and again, gaining greater understanding and satisfaction with each reading.
From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory offers a look at the present state of the theory in a single, unified resource. Taking a broad look at the algebraic, combinatorial, and analytic fundamentals, this book derives factorization results and applies them in concrete arithmetical situations using appropriate transfer principles. It begins with a basic introduction that can be understood with knowledge of standard basic algebra. The authors then move to the algebraic theory of monoids, arithmetic theory of monoids, the structure of sets of lengths, additive group theory, arithmetical invariants, and the arithmetic of Krull monoids. They also provide a self-contained introduction to abstract analytic number theory as well as a modern treatment of W. Narkiewicz's analytic theory of non-unique factorizations. Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory builds the discussion from first principles to applied problem solving, making it ideally suited to those not familiar with the theory as well as those who wish to deepen their understanding.
Sums of Squares of Integers covers topics in combinatorial number theory as they relate to counting representations of integers as sums of a certain number of squares. The book introduces a stimulating area of number theory where research continues to proliferate. It is a book of "firsts" - namely it is the first book to combine Liouville's elementary methods with the analytic methods of modular functions to study the representation of integers as sums of squares. It is the first book to tell how to compute the number of representations of an integer n as the sum of s squares of integers for any s and n. It is also the first book to give a proof of Szemeredi's theorem, and is the first number theory book to discuss how the modern theory of modular forms complements and clarifies the classical fundamental results about sums of squares. The book presents several existing, yet still interesting and instructive, examples of modular forms. Two chapters develop useful properties of the Bernoulli numbers and illustrate arithmetic progressions, proving the theorems of van der Waerden, Roth, and Szemeredi. The book also explains applications of the theory to three problems that lie outside of number theory in the areas of cryptanalysis, microwave radiation, and diamond cutting. The text is complemented by the inclusion of over one hundred exercises to test the reader's understanding.
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
From Polynomials to Sums of Squares describes a journey through the foothills of algebra and number theory based around the central theme of factorization. The book begins by providing basic knowledge of rational polynomials, then gradually introduces other integral domains, and eventually arrives at sums of squares of integers. The text is complemented with illustrations that feature specific examples. Other than familiarity with complex numbers and some elementary number theory, very little mathematical prerequisites are needed. The accompanying disk enables readers to explore the subject further by removing the tedium of doing calculations by hand. Throughout the text there are practical activities involving the computer.
This book provides an account of part of the theory of Lie algebras most relevant to Lie groups. It discusses the basic theory of Lie algebras, including the classification of complex semisimple Lie algebras, and the Levi, Cartan and Iwasawa decompositions.
While its roots reach back to the third century, diophantine analysis continues to be an extremely active and powerful area of number theory. Many diophantine problems have simple formulations, they can be extremely difficult to attack, and many open problems and conjectures remain. Diophantine Analysis examines the theory of diophantine approximations and the theory of diophantine equations, with emphasis on interactions between these subjects. Beginning with the basic principles, the author develops his treatment around the theory of continued fractions and examines the classic theory, including some of its applications. He also explores modern topics rarely addressed in other texts, including the abc conjecture, the polynomial Pell equation, and the irrationality of the zeta function and touches on topics and applications related to discrete mathematics, such as factoring methods for large integers. Setting the stage for tackling the field's many open problems and conjectures, Diophantine Analysis is an ideal introduction to the fundamentals of this venerable but still dynamic field. A detailed appendix supplies the necessary background material, more than 200 exercises reinforce the concepts, and engaging historical notes bring the subject to life.
Describes the development and extension of fundamental idea of Edouard Lucas, a French mathematician and mathematical recreationist, that is still used today in the verification of the largest primes.
This volume presents an exhaustive treatment of computation and algorithms for finite fields. Topics covered include polynomial factorization, finding irreducible and primitive polynomials, distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types, and new applications of finite fields to other areas of mathematics. For completeness, also included are two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number generators, modular arithmetic etc.), and computational number theory (primality testing, factoring integers, computing in algebraic number theory, etc). The problems considered here have many applications in computer science, coding theory, cryptography, number theory and discrete mathematics. The level of discussion presupposes only a knowledge of the basic facts on finite fields, and the book can be recommended as supplementary graduate text. For researchers and students interested in computational and algorithmic problems in finite fields.
Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the Andre-Oort and Zilber-Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.
A selection of the most accessible survey papers from the Millennial Conference on Number Theory. Presented and compiled by a group of international experts, these papers provide a current view of the state of the art and an outlook into the future of number theory research. This book serves as an inspiration to graduate students and as a reference for research mathematicians.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
This volume contains selected refereed papers based on lectures presented at the 'Integers Conference 2007', an international conference in combinatorial number theory that was held in Carrollton, Georgia in October 2007. The proceedings include contributions from many distinguished speakers, including George Andrews, Neil Hindman, Florian Luca, Carl Pomerance, Ken Ono and Igor E. Shparlinski. Among the topics considered in these papers are additive number theory, multiplicative number theory, sequences, elementary number theory, theory of partitions, and Ramsey theory.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The Proceedings contain twenty selected, refereed contributions arising from the International Conference on Public-Key Cryptography and Computational Number Theory held in Warsaw, Poland, on September 11-15, 2000. The conference, attended by eightyfive mathematicians from eleven countries, was organized by the Stefan Banach International Mathematical Center. This volume contains articles from leading experts in the world on cryptography and computational number theory, providing an account of the state of research in a wide variety of topics related to the conference theme. It is dedicated to the memory of the Polish mathematicians Marian Rejewski (1905-1980), Jerzy Rooycki (1909-1942) and Henryk Zygalski (1907-1978), who deciphered the military version of the famous Enigma in December 1932 ? January 1933. A noteworthy feature of the volume is a foreword written by Andrew Odlyzko on the progress in cryptography from Enigma time until now."
While the valuation of standard American option contracts has now achieved a fair degree of maturity, much work remains to be done regarding the new contractual forms that are constantly emerging in response to evolving economic conditions and regulations. Focusing on recent developments in the field, American-Style Derivatives provides an extensive treatment of option pricing with an emphasis on the valuation of American options on dividend-paying assets. The book begins with a review of valuation principles for European contingent claims in a financial market in which the underlying asset price follows an Ito process and the interest rate is stochastic and then extends the analysis to American contingent claims. In this context the author lays out the basic valuation principles for American claims and describes instructive representation formulas for their prices. The results are applied to standard American options in the Black-Scholes market setting as well as to a variety of exotic contracts such as barrier, capped, and multi-asset options. He also reviews numerical methods for option pricing and compares their relative performance. The author explains all the concepts using standard financial terms and intuitions and relegates proofs to appendices that can be found at the end of each chapter. The book is written so that the material is easily accessible not only to those with a background in stochastic processes and/or derivative securities, but also to those with a more limited exposure to those areas.
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
A selection of the most accessible survey papers from the Millennial Conference on Number Theory. Presented and compiled by a group of international experts, these papers provide a current view of the state of the art and an outlook into the future of number theory research. This book serves as an inspiration to graduate students and as a reference for research mathematicians.
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.
This carefully prepared manuscript presents elimination theory in weighted projective spaces over arbitrary noetherian commutative base rings. Elimination theory is a classical topic in commutative algebra and algebraic geometry, and it has become of renewed importance recently in the context of applied and computational algebra. This monograph provides a valuable complement to sparse elimination theory in that it presents in careful detail the algebraic difficulties from working over general base rings. This is essential for applications in arithmetic geometry and many other places. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples.
Semialgebraic Statistics and Latent Tree Models explains how to analyze statistical models with hidden (latent) variables. It takes a systematic, geometric approach to studying the semialgebraic structure of latent tree models. The first part of the book gives a general introduction to key concepts in algebraic statistics, focusing on methods that are helpful in the study of models with hidden variables. The author uses tensor geometry as a natural language to deal with multivariate probability distributions, develops new combinatorial tools to study models with hidden data, and describes the semialgebraic structure of statistical models. The second part illustrates important examples of tree models with hidden variables. The book discusses the underlying models and related combinatorial concepts of phylogenetic trees as well as the local and global geometry of latent tree models. It also extends previous results to Gaussian latent tree models. This book shows you how both combinatorics and algebraic geometry enable a better understanding of latent tree models. It contains many results on the geometry of the models, including a detailed analysis of identifiability and the defining polynomial constraints.
To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few. "
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields. |
You may like...
Poetic Inquiry For The Human And Social…
Heidi van Rooyen, Kathleen Pithouse-Morgan
Paperback
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
(1)
|