![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
This volume is an outgrowth of the program Modular Representation Theory of Finite and p-Adic Groups held at the Institute for Mathematical Sciences at National University of Singapore during the period of 1-26 April 2013. It contains research works in the areas of modular representation theory of p-adic groups and finite groups and their related algebras. The aim of this volume is to provide a bridge - where interactions are rare between researchers from these two areas - by highlighting the latest developments, suggesting potential new research problems, and promoting new collaborations.It is perhaps one of the few volumes, if not only, which treats such a juxtaposition of diverse topics, emphasizing their common core at the heart of Lie theory.
Originally published in 1994, The Incommensurability Thesis is a critical study of the Incommensurability Thesis of Thomas Kuhn and Paul Feyerabend. The book examines the theory that different scientific theories may be incommensurable because of conceptual variance. The book presents a critique of the thesis and examines and discusses the arguments for the theory, acknowledging and debating the opposing views of other theorists. The book provides a comprehensive and detailed discussion of the incommensurability thesis.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This is the second volume of Algebras, Rings and Modules: Non-commutative Algebras and Rings by M. Hazewinkel and N. Gubarenis, a continuation stressing the more important recent results on advanced topics of the structural theory of associative algebras, rings and modules.
The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume.
In today's unsafe and increasingly wired world cryptology plays a vital role in protecting communication channels, databases, and software from unwanted intruders. This revised and extended third edition of the classic reference work on cryptology now contains many new technical and biographical details. The first part treats secret codes and their uses - cryptography. The second part deals with the process of covertly decrypting a secret code - cryptanalysis, where particular advice on assessing methods is given. The book presupposes only elementary mathematical knowledge. Spiced with a wealth of exciting, amusing, and sometimes personal stories from the history of cryptology, it will also interest general readers.
This collection of survey and research articles focuses on recent developments concerning various quantitative aspects of 'thin groups'. There are discrete subgroups of semisimple Lie groups that are both big (i.e., Zariski dense) and small (i.e., of infinite co-volume). This dual nature leads to many intricate questions. Over the past few years, many new ideas and techniques, arising in particular from arithmetic combinatorics, have been involved in the study of such groups, leading, for instance, to far-reaching generalizations of the strong approximation theorem in which congruence quotients are shown to exhibit a spectral gap, referred to as superstrong approximation. This book provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics. It is suitable for professional mathematicians and graduate students in mathematics interested in this fascinating area of research.
This book deals with several aspects of what is now called "explicit number theory." The central theme is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The local aspect, global aspect, and the third aspect is the theory of zeta and L-functions. This last aspect can be considered as a unifying theme for the whole subject.
Proofs 101: An Introduction to Formal Mathematics serves as an introduction to proofs for mathematics majors who have completed the calculus sequence (at least Calculus I and II) and a first course in linear algebra. The book prepares students for the proofs they will need to analyze and write the axiomatic nature of mathematics and the rigors of upper-level mathematics courses. Basic number theory, relations, functions, cardinality, and set theory will provide the material for the proofs and lay the foundation for a deeper understanding of mathematics, which students will need to carry with them throughout their future studies. Features Designed to be teachable across a single semester Suitable as an undergraduate textbook for Introduction to Proofs or Transition to Advanced Mathematics courses Offers a balanced variety of easy, moderate, and difficult exercises
In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more."
The Rogers--Ramanujan identities are a pair of infinite series-infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers-Ramanujan identities and will include related historical material that is unavailable elsewhere.
Proofs 101: An Introduction to Formal Mathematics serves as an introduction to proofs for mathematics majors who have completed the calculus sequence (at least Calculus I and II) and a first course in linear algebra. The book prepares students for the proofs they will need to analyze and write the axiomatic nature of mathematics and the rigors of upper-level mathematics courses. Basic number theory, relations, functions, cardinality, and set theory will provide the material for the proofs and lay the foundation for a deeper understanding of mathematics, which students will need to carry with them throughout their future studies. Features Designed to be teachable across a single semester Suitable as an undergraduate textbook for Introduction to Proofs or Transition to Advanced Mathematics courses Offers a balanced variety of easy, moderate, and difficult exercises
This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.
The aim of the book is to give a smooth analytic continuation from basic subjects including linear algebra, group theory, Hilbert space theory, etc. to number theory. With plenty of practical examples and worked-out exercises, and the scope ranging from these basic subjects made applicable to number-theoretic settings to advanced number theory, this book can then be read without tears. It will be of immense help to the reader to acquire basic sound skills in number theory and its applications.Number theory used to be described as the queen of mathematics, that is, there is no practical use. However, with the development of computers and the security of internet communications, the importance of number theory has been exponentially increasing daily. The raison d'etre of the present book in this situation is that it is extremely reader-friendly while keeping the rigor of serious mathematics and in-depth analysis of practical applications to various subjects including control theory and pseudo-random number generation. The use of operators is prevailing rather abundantly in anticipation of applications to electrical engineering, allowing the reader to master these skills without much difficulty. It also delivers a very smooth bridging between elementary subjects including linear algebra and group theory (and algebraic number theory) for the reader to be well-versed in an efficient and effortless way. One of the main features of the book is that it gives several different approaches to the same topic, helping the reader to gain deeper insight and comprehension. Even just browsing through the materials would be beneficial to the reader.
This volume is the result of the author's many-years of research in this field. These results were presented in the author's two books, Introduction to the Algorithmic Measurement Theory (Moscow, Soviet Radio, 1977), and Codes of the Golden Proportion (Moscow, Radio and Communications, 1984), which had not been translated into English and are therefore not known to English-speaking audience. This volume sets forth new informational and arithmetical fundamentals of computer and measurement systems based on Fibonacci p-codes and codes of the golden p-proportions, and also on Bergman's system and 'golden' ternary mirror-symmetrical arithmetic. The book presents some new historical hypotheses concerning the origin of the Egyptian calendar and the Babylonian numeral system with base 60 (dodecahedral hypothesis), as well as about the origin of the Mayan's calendar and their numeral system with base 20 (icosahedral hypothesis). The book is intended for the college and university level. The book will also be of interest to all researchers, who use the golden ratio and Fibonacci numbers in their subject areas, and to all readers who are interested to the history of mathematics.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography-revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis. The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm-the LLL algorithm and its application in the cryptanalysis of the RSA algorithm. Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography.
Hardy's Z-function, related to the Riemann zeta-function (s), was originally utilised by G. H. Hardy to show that (s) has infinitely many zeros of the form 1/2+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line 1/2+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of (s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.
Model theory is one of the central branches of mathematical logic. The field has evolved rapidly in the last few decades. This book is an introduction to current trends in model theory, and contains a collection of articles authored by top researchers in the field. It is intended as a reference for students as well as senior researchers.
George Andrews is one of the most influential figures in number theory and combinatorics. In the theory of partitions and q-hypergeometric series and in the study of Ramanujan's work, he is the unquestioned leader. To suitably honor him during his 70th birthday year, an International Conference on Combinatory Analysis was held at The Pennsylvania State University during December 5-7, 2008. Three issues of the Ramanujan Journal comprising Volume 23 were published in 2010 as the refereed proceedings of that conference. The Ramanujan Journal was proud to bring out that volume honoring one of its Founding Editors. In view of the great interest that the mathematical community has in the influential work of Andrews, it was decided to republish Volume 23 of The Ramanujan Journal in this book form, so that the refereed proceedings are more readily available for those who do not subscribe to the journal but wish to possess this volume. As a fitting tribute to George Andrews, many speakers from the conference contributed research papers to this volume which deals with a broad range of areas that signify the research interests of George Andrews. In reproducing Volume 23 of The Ramanujan Journal in this book form, we have included two papers-one by Hei-Chi Chan and Shaun Cooper, and another by Ole Warnaar-which were intended for Volume 23 of The Ramanujan Journal, but appeared in other issues. The enormous productivity of George Andrews remains unabated in spite of the passage of time. His immensely fertile mind continues to pour forth seminal ideas year after year. He has two research papers in this volume. May his eternal youthfulness and his magnificent research output continue to inspire and influence researchers in the years ahead.
This resource volume is an enlargement as well as an update of the previous edition. The book aims to introduce the reader to over 100 different families of positive integers. A brief historical note accompanies the descriptions and examples of several of the families together with a mix of routine exercises and problems as well as some thought provokers to solve. Number Treasury3 especially aims to stimulate further study beyond the scope of the introductory treatment given in the book. The emphasis in Number Treasury3 is on doing not proving. However, the reader is directed to think critically about situations, to provide explanations, to make generalizations, and to formulate conjectures. To engage the reader from the start, the book begins with a set of rich Investigations. These are standalone activities that represent each of the chapters of the book.
Congruences are ubiquitous in computer science, engineering, mathematics, and related areas. Developing techniques for finding (the number of) solutions of congruences is an important problem. But there are many scenarios in which we are interested in only a subset of the solutions; in other words, there are some restrictions. What do we know about these restricted congruences, their solutions, and applications? This book introduces the tools that are needed when working on restricted congruences and then systematically studies a variety of restricted congruences. Restricted Congruences in Computing defines several types of restricted congruence, obtains explicit formulae for the number of their solutions using a wide range of tools and techniques, and discusses their applications in cryptography, information security, information theory, coding theory, string theory, quantum field theory, parallel computing, artificial intelligence, computational biology, discrete mathematics, number theory, and more. This is the first book devoted to restricted congruences and their applications. It will be of interest to graduate students and researchers across computer science, electrical engineering, and mathematics.
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including mu-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
This resource volume is an enlargement as well as an update of the previous edition. The book aims to introduce the reader to over 100 different families of positive integers. A brief historical note accompanies the descriptions and examples of several of the families together with a mix of routine exercises and problems as well as some thought provokers to solve. Number Treasury3 especially aims to stimulate further study beyond the scope of the introductory treatment given in the book. The emphasis in Number Treasury3 is on doing not proving. However, the reader is directed to think critically about situations, to provide explanations, to make generalizations, and to formulate conjectures. To engage the reader from the start, the book begins with a set of rich Investigations. These are standalone activities that represent each of the chapters of the book.
The author offers a thorough presentation of the classical theory of algebraic numbers and algebraic functions which both in its conception and in many details differs from the current literature on the subject. The basic features are: Field-theoretic preliminaries and a detailed presentation of Dedekind's ideal theory including non-principal orders and various types of class groups; the classical theory of algebraic number fields with a focus on quadratic, cubic and cyclotomic fields; basics of the analytic theory including the prime ideal theorem, density results and the determination of the arithmetic by the class group; a thorough presentation of valuation theory including the theory of difference, discriminants, and higher ramification. The theory of function fields is based on the ideal and valuation theory developed before; it presents the Riemann-Roch theorem on the basis of Weil differentials and highlights in detail the connection with classical differentials. The theory of congruence zeta functions and a proof of the Hasse-Weil theorem represent the culminating point of the volume. The volume is accessible with a basic knowledge in algebra and elementary number theory. It empowers the reader to follow the advanced number-theoretic literature, and is a solid basis for the study of the forthcoming volume on the foundations and main results of class field theory. Key features: * A thorough presentation of the theory of Algebraic Numbers and Algebraic Functions on an ideal and valuation-theoretic basis. * Several of the topics both in the number field and in the function field case were not presented before in this context. * Despite presenting many advanced topics, the text is easily readable. Franz Halter-Koch is professor emeritus at the university of Graz. He is the author of "Ideal Systems" (Marcel Dekker,1998), "Quadratic Irrationals" (CRC, 2013), and a co-author of "Non-Unique Factorizations" (CRC 2006). |
![]() ![]() You may like...
Theory and Practice of Model…
Esther Guerra, Mark Van Den Brand
Paperback
R1,521
Discovery Miles 15 210
Behind Prison Walls - Unlocking a Safer…
Edwin Cameron, Rebecca Gore, …
Paperback
Uncertainty-aware Integration of Control…
Vassilis M. Charitopoulos
Hardcover
R2,905
Discovery Miles 29 050
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
Reflections on Programming Systems…
Liesbeth de Mol, Giuseppe Primiero
Hardcover
R4,134
Discovery Miles 41 340
Hybrid-Renewable Energy Systems in…
Hina Fathima, Prabaharan N, …
Paperback
Madam & Eve 2018 - The Guptas Ate My…
Stephen Francis, Rico Schacherl
Paperback
|