![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This book provides insight into the mathematics of Galerkin finite element method as applied to parabolic equations. The revised second edition has been influenced by recent progress in application of semigroup theory to stability and error analysis, particulatly in maximum-norm. Two new chapters have also been added, dealing with problems in polygonal, particularly noncovex, spatial domains, and with time discretization based on using Laplace transformation and quadrature.
Introducing the Collins Modern Classics, a series featuring some of the most significant books of recent times, books that shed light on the human experience - classics which will endure for generations to come. 'Maths is one of the purest forms of thought, and to outsiders mathematicians may seem almost otherworldly' In 1963, schoolboy Andrew Wiles stumbled across the world's greatest mathematical problem: Fermat's Last Theorem. Unsolved for over 300 years, he dreamed of cracking it. Combining thrilling storytelling with a fascinating history of scientific discovery, Simon Singh uncovers how an Englishman, after years of secret toil, finally solved mathematics' most challenging problem. Fermat's Last Theorem is remarkable story of human endeavour, obsession and intellectual brilliance, sealing its reputation as a classic of popular science writing. 'To read it is to realise that there is a world of beauty and intellectual challenge that is denied to 99.9 per cent of us who are not high-level mathematicians' The Times
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
The chapters in this contributed volume explore new results and existing problems in algebra, analysis, and related topics. This broad coverage will help generate new ideas to solve various challenges that face researchers in pure mathematics. Specific topics covered include maximal rotational hypersurfaces, k-Horadam sequences, quantum dynamical semigroups, and more. Additionally, several applications of algebraic number theory and analysis are presented. Algebra, Analysis, and Associated Topics will appeal to researchers, graduate students, and engineers interested in learning more about the impact pure mathematics has on various fields.
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke 's theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr 's theory of equivalence of general Dirichlet series.
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.
The square root of 2 is a fascinating number if a little less famous than such mathematical stars as pi, the number e, the golden ratio, or the square root of 1. (Each of these has been honored by at least one recent book.) Here, in an imaginary dialogue between teacher and student, readers will learn why v2 is an important number in its own right, and how, in puzzling out its special qualities, mathematicians gained insights into the illusive nature of irrational numbers. Using no more than basic high school algebra and geometry, David Flannery manages to convey not just why v2 is fascinating and significant, but how the whole enterprise of mathematical thinking can be played out in a dialogue that is imaginative, intriguing, and engaging. Original and informative, The Square Root of 2 is a one-of-a-kind introduction to the pleasure and playful beauty of mathematical thinking.
Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.
An Introduction to Number Theory provides an introduction to the main streams of number theory. Starting with the unique factorization property of the integers, the theme of factorization is revisited several times throughout the book to illustrate how the ideas handed down from Euclid continue to reverberate through the subject. In particular, the book shows how the Fundamental Theorem of Arithmetic, handed down from antiquity, informs much of the teaching of modern number theory. The result is that number theory will be understood, not as a collection of tricks and isolated results, but as a coherent and interconnected theory. A number of different approaches to number theory are presented, and the different streams in the book are brought together in a chapter that describes the class number formula for quadratic fields and the famous conjectures of Birch and Swinnerton-Dyer. The final chapter introduces some of the main ideas behind modern computational number theory and its applications in cryptography. Written for graduate and advanced undergraduate students of mathematics, this text will also appeal to students in cognate subjects who wish to learn some of the big ideas in number theory.
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras," which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
This book brings together the impact of Prof. John Horton Conway, the playful and legendary mathematician's wide range of contributions in science which includes research areas-Game of Life in cellular automata, theory of finite groups, knot theory, number theory, combinatorial game theory, and coding theory. It contains transcripts where some eminent scientists have shared their first-hand experience of interacting with Conway, as well as some invited research articles from the experts focusing on Game of Life, cellular automata, and the diverse research directions that started with Conway's Game of Life. The book paints a portrait of Conway's research life and philosophical direction in mathematics and is of interest to whoever wants to explore his contribution to the history and philosophy of mathematics and computer science. It is designed as a small tribute to Prof. Conway whom we lost on April 11, 2020.
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
On May 16 -20, 1995, approximately 150 mathematicians gathered at the Conference Center of the University of Illinois at Allerton Park for an Inter national Conference on Analytic Number Theory. The meeting marked the approaching official retirement of Heini Halberstam from the mathematics fac ulty of the University of Illinois at Urbana-Champaign. Professor Halberstam has been at the University since 1980, for 8 years as head of the Department of Mathematics, and has been a leading researcher and teacher in number theory for over forty years. The program included invited one hour lectures by G. Andrews, J. Bour gain, J. M. Deshouillers, H. Halberstam, D. R. Heath-Brown, H. Iwaniec, H. L. Montgomery, R. Murty, C. Pomerance, and R. C. Vaughan, and almost one hundred other talks of varying lengths. These volumes comprise contributions from most of the principal speakers and from many of the other participants, as well as some papers from mathematicians who were unable to attend. The contents span a broad range of themes from contemporary number theory, with the majority having an analytic flavor."
The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
This is a corrected printing of the second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms. Part I introduces some of the basic ideas of the theory: number fields, ideal classes, ideles and adeles, and zeta functions. It also contains a version of a Riemann-Roch theorem in number fields, proved by Lang in the very first version of the book in the sixties. This version can now be seen as a precursor of Arakelov theory. Part II covers class field theory, and Part III is devoted to analytic methods, including an exposition of Tate's thesis, the Brauer-Siegel theorem, and Weil's explicit formulas. The second edition contains corrections, as well as several additions to the previous edition, and the last chapter on explicit formulas has been rewritten.
Fermat's problem, also ealled Fermat's last theorem, has attraeted the attention of mathematieians far more than three eenturies. Many clever methods have been devised to attaek the problem, and many beautiful theories have been ereated with the aim of proving the theorem. Yet, despite all the attempts, the question remains unanswered. The topie is presented in the form of leetures, where I survey the main lines of work on the problem. In the first two leetures, there is a very brief deseription of the early history , as well as a seleetion of a few of the more representative reeent results. In the leetures whieh follow, I examine in sue- eession the main theories eonneeted with the problem. The last two lee tu res are about analogues to Fermat's theorem. Some of these leetures were aetually given, in a shorter version, at the Institut Henri Poineare, in Paris, as well as at Queen's University, in 1977. I endeavoured to produee a text, readable by mathematieians in general, and not only by speeialists in number theory. However, due to a limitation in size, I am aware that eertain points will appear sketehy. Another book on Fermat's theorem, now in preparation, will eontain a eonsiderable amount of the teehnieal developments omitted here. It will serve those who wish to learn these matters in depth and, I hope, it will clarify and eomplement the present volume.
This book contains 50 papers from among the 95 papers presented at the Seventh International Conference on Fibonacci Numbers and Their Applications which was held at the Institut Fiir Mathematik, Technische Universitiit Graz, Steyrergasse 30, A-SOlO Graz, Austria, from July 15 to July 19, 1996. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its six predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. September 1, 1997 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U. S. A. Alwyn F. Horadam University of New England Armidale, N. S. W. , Australia Andreas N. Philippou House of Representatives Nicosia, Cyprus xxvii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Tichy, Robert, Chairman Horadam, A. F. (Australia), Co-Chair Prodinger, Helmut, Co-Chairman Philippou, A. N. (Cyprus), Co-Chair Grabner, Peter Bergurt:t, G. E. (U. S. A. ) Kirschenhofer, Peter Filipponi, P. (Italy) Harborth, H. (Germany) Horibe, Y. (Japan) Johnson, M. (U. S. A. ) Kiss, P. (Hungary) Phillips, G. M. (Scotland) Turner, J. (New Zealand) Waddill, M. E. (U. S. A. ) xxix LIST OF CONTRIBUTORS TO THE CONFERENCE *ADELBERG, ARNOLD, "Higher Order Bernoulli Polynomials and Newton Polygons. " AMMANN, ANDRE, "Associated Fibonacci Sequences. " *ANDERSON, PETER G. , "The Fibonacci Shuffle Tree.
This volume features contributions from the Women in Commutative Algebra (WICA) workshop held at the Banff International Research Station (BIRS) from October 20-25, 2019, run by the Pacific Institute of Mathematical Sciences (PIMS). The purpose of this meeting was for groups of mathematicians to work on joint research projects in the mathematical field of Commutative Algebra and continue these projects together long-distance after its close. The chapters include both direct results and surveys, with contributions from research groups and individual authors. The WICA conference was the first of its kind in the large and vibrant area of Commutative Algebra, and this volume is intended to showcase its important results and to encourage further collaboration among marginalized practitioners in the field. It will be of interest to a wide range of researchers, from PhD students to senior experts.
"Still waters run deep." This proverb expresses exactly how a mathematician Akihito Uchiyama and his works were. He was not celebrated except in the field of harmonic analysis, and indeed he never wanted that. He suddenly passed away in summer of 1997 at the age of 48. However, nowadays his contributions to the fields of harmonic analysis and real analysis are permeating through various fields of analysis deep and wide. One could write several papers explaining his contributions and how they have been absorbed into these fields, developed, and used in further breakthroughs. Peter W. Jones (Professor of Yale University) says in his special contribution to this book that Uchiyama's decomposition of BMO functions is considered to be the Mount Everest of Hardy space theory. This book is based on the draft, which the author Akihito Uchiyama had completed by 1990. It deals with the theory of real Hardy spaces on the n-dimensional Euclidean space. Here the author explains scrupulously some of important results on Hardy spaces by real-variable methods, in particular, the atomic decomposition of elements in Hardy spaces and his constructive proof of the Fefferman-Stein decomposition of BMO functions into the sum of a bounded?function and Riesz transforms of bounded functions.
This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.
This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020 workshops at the City University of New York. The latter was held online due to the COVID-19 pandemic, and featured speakers from North and South America, Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain 25 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003 at the CUNY Graduate Center, the workshop surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, zero-sum sequences, minimal complements, analytic and prime number theory, Hausdorff dimension, combinatorial and discrete geometry, and Ramsey theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
This book summarizes recent inventions, provides guidelines and recommendations, and demonstrates many practical applications of homomorphic encryption. This collection of papers represents the combined wisdom of the community of leading experts on Homomorphic Encryption. In the past 3 years, a global community consisting of researchers in academia, industry, and government, has been working closely to standardize homomorphic encryption. This is the first publication of whitepapers created by these experts that comprehensively describes the scientific inventions, presents a concrete security analysis, and broadly discusses applicable use scenarios and markets. This book also features a collection of privacy-preserving machine learning applications powered by homomorphic encryption designed by groups of top graduate students worldwide at the Private AI Bootcamp hosted by Microsoft Research. The volume aims to connect non-expert readers with this important new cryptographic technology in an accessible and actionable way. Readers who have heard good things about homomorphic encryption but are not familiar with the details will find this book full of inspiration. Readers who have preconceived biases based on out-of-date knowledge will see the recent progress made by industrial and academic pioneers on optimizing and standardizing this technology. A clear picture of how homomorphic encryption works, how to use it to solve real-world problems, and how to efficiently strengthen privacy protection, will naturally become clear.
This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research. |
You may like...
New Horizons in Insect Science: Towards…
Akshay Kumar Chakravarthy
Hardcover
R4,183
Discovery Miles 41 830
Engineering Scalable, Elastic, and…
Steffen Becker, Gunnar Brataas, …
Hardcover
R2,017
Discovery Miles 20 170
Recent Advances in Global…
Shamsul Bahri Abd Razak, Tuan Zainazor Tuan Chilek, …
Hardcover
R5,327
Discovery Miles 53 270
Behind Prison Walls - Unlocking a Safer…
Edwin Cameron, Rebecca Gore, …
Paperback
Applications and Theory of Petri Nets…
Gianfranco Ciardo, Philippe Darondeau
Paperback
R1,599
Discovery Miles 15 990
Advances in the Complex Variable…
Theodore V Hromadka, Robert J Whitley
Hardcover
R4,228
Discovery Miles 42 280
Trust in Technology: A Socio-Technical…
Karen Clarke, Gillian Hardstone, …
Hardcover
R2,666
Discovery Miles 26 660
|