![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
It has become clear that problem solving plays an extremely important role in mathematical research. This book is a collection of about 500 problems in algebraic number theory. They are systematically arranged to reveal the evolution of concepts and ideas of the subject. For this new edition the authors have added a new chapter and revised several sections.
From the review: "The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." W. Kleinert in: Zentralblatt für Mathematik, 1992
This volume begins with a description of Alladi Ramakrishnan's remarkable scientific career and his grand vision that led to the creation of The Institute of Mathematical Sciences (MATSCIENCE), in Madras (now Chennai), India, in 1962. The lists of his research publications, his PhD students, and other relevant facts relating to his eventful career are included. The inclusion of both research and survey articles by leading mathematicians, statisticians, and physicists who got to know Alladi Ramakrishnan over the years and admired his significant contributions to research and to the scientific profession, have been written and dedicated in this volume to Ramakrishnan's memory.
In August 1995 an international symposium on "Quasiconformal Mappings and Analysis" was held in Ann Arbor on the occasion of Professor Fred- erick W. Gehring's 70th birthday and his impending retirement from the Mathematics Department at the University of Michigan. The concept of the symposium was to feature broad survey talks on a wide array of topics related to Gehring's basic research contributions in the field of quasicon- formal mappings, emphasizing their relations to other parts of analysis. Principal speakers were Kari Astala, Albert Baernstein, Clifford Earle, Pe- ter Jones, Irwin Kra, OUi Lehto, Gaven Martin, Dennis Sullivan, and Jussi Vaisala. Financial support was provided by the National Science Founda- tion, with additional grants from the University of Michigan and from the Institute for Mathematics and its Applications. The symposium was a great success. The speakers rose to the occasion and presented excellent survey lectures. The present volume was conceived as a means for disseminating those expositions to a wider audience. Ad- ditional mathematicians, some of whom had not been able to attend the symposium, were invited to contribute similar articles. The result is a fit- ting tribute to Fred Gehring's pre-eminent role in developing the theory of quasiconformal mappings, through his own research and writings and lec- tures, and through his supervision of graduate students. The volume begins with descriptions of Gehring's mathematical career and an overview of his research achievements.
Featuring the clearly presented and expertly-refereed contributions of leading researchers in the field of approximation theory, this volume is a collection of the best contributions at the Third International Conference on Applied Mathematics and Approximation Theory, an international conference held at TOBB University of Economics and Technology in Ankara, Turkey, on May 28-31, 2015. The goal of the conference, and this volume, is to bring together key work from researchers in all areas of approximation theory, covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. These topics are presented both within their traditional context of approximation theory, while also focusing on their connections to applied mathematics. As a result, this collection will be an invaluable resource for researchers in applied mathematics, engineering and statistics.
Spinors are used extensively in physics. It is widely accepted that they are more fundamental than tensors, and the easy way to see this is through the results obtained in general relativity theory by using spinors -- results that could not have been obtained by using tensor methods only. The foundation of the concept of spinors is groups; spinors appear as representations of groups. This textbook expounds the relationship between spinors and representations of groups. As is well known, spinors and representations are both widely used in the theory of elementary particles. The authors present the origin of spinors from representation theory, but nevertheless apply the theory of spinors to general relativity theory, and part of the book is devoted to curved space-time applications. Based on lectures given at Ben Gurion University, this textbook is intended for advanced undergraduate and graduate students in physics and mathematics, as well as being a reference for researchers.
Preliminary Text. Do not use. Sphere Packings is one of the most attractive and challenging subjects in mathematics. Almost 4 centuries ago, Kepler studied the densities of sphere packings and made his famous conjecture. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with othe subjects found. Thus, though some of its original problems are still open, sphere packings has been developed into an important discipline. This book tries to give a full account of this fascinating subject, especially its local aspects, discrete aspects and its proof methods.
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
The second volume of this work contains Parts 2 and 3 of the "Handbook of Coding Theory". Part 2, "Connections", is devoted to connections between coding theory and other branches of mathematics and computer science. Part 3, "Applications", deals with a variety of applications for coding.
This volume contains the proceedings of the very successful second China-Japan Seminar held in lizuka, Fukuoka, Japan, during March 12-16, 2001 under the support of the Japan Society for the Promotion of Science (JSPS) and the National Science Foundation of China (NSFC), and some invited papers of eminent number-theorists who visited Japan during 1999-2001 at the occasion of the Conference at the Research Institute of Mathematical Sciences (RIMS), Kyoto University. The proceedings of the 1st China-Japan Seminar held in September 1999 in Beijing has been published recently {2002) by Kluwer as DEVM 6 which also contains some invited papers. The topics of that volume are, however, restricted to analytic number theory and many papers in this field are assembled. In this volume, we return to the lines of the previous one "Number Theory and its Applications," published as DEVM 2 by Kluwer in 1999 and uphold the spirit of presenting various topics in number theory and related areas with possible applica tions, in a unified manner, and this time in nearly a book form with a well-prepared index. We accomplish this task by collecting highly informative and readable survey papers (including half-survey type papers), giving overlooking surveys of the hith erto obtained results in up-to-the-hour form with insight into the new developments, which are then analytically continued to a collection of high standard research papers which are concerned with rather diversed areas and will give good insight into new researches in the new century."
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.
This volume contains selected refereed papers based on lectures presented at the "Integers Conference 2011", an international conference in combinatorial number theory that was held in Carrollton, Georgia, United States in October 2011. This was the fifth Integers Conference, held bi-annually since 2003. It featured plenary lectures presented by Ken Ono, Carla Savage, Laszlo Szekely, Frank Thorne, and Julia Wolf, along with sixty other research talks. This volume consists of ten refereed articles, which are expanded and revised versions of talks presented at the conference. They represent a broad range of topics in the areas of number theory and combinatorics including multiplicative number theory, additive number theory, game theory, Ramsey theory, enumerative combinatorics, elementary number theory, the theory of partitions, and integer sequences.
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. It includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions and Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is the systematic use, in proofs, of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. Two chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adelic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Moebius function, Euler's totient function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Regis de la Breteche, Christian Elsholtz, John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivic, Geoffrey Iyer, Jerzy Kaczorowski, Daniel M. Kane, Sergei Konyagin, Dimitris Koukoulopoulos, Michel L. Lapidus, Oleg Lazarev, Andrew H. Ledoan, Robert J. Lemke Oliver, Florian Luca, James Maynard, Steven J. Miller, Hugh L. Montgomery, Melvyn B. Nathanson, Ashkan Nikeghbali, Alberto Perelli, Amalia Pizarro-Madariaga, Janos Pintz, Paul Pollack, Carl Pomerance, Michael Th. Rassias, Maksym Radziwill, Joel Rivat, Andras Sarkoezy, Jeffrey Shallit, Terence Tao, Gerald Tenenbaum, Laszlo Toth, Tamar Ziegler, Liyang Zhang.
The book introduces new techniques which imply rigorous lower bounds on the complexity of some number theoretic and cryptographic problems. These methods and techniques are based on bounds of character sums and numbers of solutions of some polynomial equations over finite fields and residue rings. It also contains a number of open problems and proposals for further research. We obtain several lower bounds, exponential in terms of logp, on the de grees and orders of * polynomials; * algebraic functions; * Boolean functions; * linear recurring sequences; coinciding with values of the discrete logarithm modulo a prime p at suf ficiently many points (the number of points can be as small as pI/He). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the right most bit of the discrete logarithm and defines whether the argument is a quadratic residue. We also obtain non-trivial upper bounds on the de gree, sensitivity and Fourier coefficients of Boolean functions on bits of x deciding whether x is a quadratic residue. These results are used to obtain lower bounds on the parallel arithmetic and Boolean complexity of computing the discrete logarithm. For example, we prove that any unbounded fan-in Boolean circuit. of sublogarithmic depth computing the discrete logarithm modulo p must be of superpolynomial size.
The subject of the book is Diophantine approximation and Nevanlinna theory. Not only does the text provide new results and directions, it also challenges open problems and collects latest research activities on these subjects made by the authors over the past eight years. Some of the significant findings are the proof of the Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, and a generalized abc-conjecture. The book also presents the state of the art in the studies of the analogues between Diophantine approximation (in number theory) and value distribution theory (in complex analysis), with a method based on Vojta's dictionary for the terms of these two fields. The approaches are relatively natural and more effective than existing methods. The book is self-contained and appended with a comprehensive and up-to-date list of references. It is of interest to a broad audience of graduate students and researchers specialized in pure mathematics.
This book is the first monograph wholly devoted to the investigation of differential and difference dimension theory. The differential dimension polynomial describes in exact terms the degree of freedom of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. Difference algebra arises from the study of algebraic difference equations and therefore bears a considerable resemblance to its differential counterpart. Difference algebra was developed in the same period as differential algebra and it has the same founder, J. Ritt. It grew to a mathematical area with its own ideas and methods mainly due to the work of R. Cohn, who raised difference algebra to the same level as differential algebra. The relatively new science of computer algebra has given strong impulses to the theory of dimension polynomials, now that packages such as MAPLE enable the solution of many problems which cannot be solved otherwise. Applications of differential and difference dimension theory can be found in many fields of mathematics, as well as in theoretical physics, system theory and other areas of science. Audience: This book will be of interest to researchers and graduate students whose work involves differential and difference equations, algebra and number theory, partial differential equations, combinatorics and mathematical physics.
This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals. It covers classical material on the subject as well as many new results developed by the author over the past decade. A range of ideas from other areas of mathematics are brought to bear with surprising connections to topics such as formulae for class numbers, special values of L-functions, and Dedekind sums. Care is taken to elaborate difficult proofs by motivating major steps and accompanying them with background explanations, enabling the reader to learn the theory and relevant techniques. Written by one of the acknowledged experts in the field, Probabilistic Diophantine Approximation is presented in a clear and informal style with sufficient detail to appeal to both advanced students and researchers in number theory.
From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. Skinner (Princeton University), "Deformations of Galois representations. " R. Stanley (Massachusetts Institute of Technology), "Some interesting hyperplane arrangements. " F. Rodriguez Villegas (Princeton University), "Modular Mahler measures. " T. Wooley (University of Michigan), "Diophantine problems in many variables: The role of additive number theory. " D. Zeilberger (Temple University), "Reverse engineering in combinatorics and number theory. " The papers in this volume provide an accurate picture of many of the topics presented at the conference including contributions from four of the plenary lectures."
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2* . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world's leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
The Fifth Edition of one of the standard works on number theory, written by internationally-recognized mathematicians. Chapters are relatively self-contained for greater flexibility. New features include expanded treatment of the binomial theorem, techniques of numerical calculation and a section on public key cryptography. Contains an outstanding set of problems.
The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings. |
You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
|