![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. Skinner (Princeton University), "Deformations of Galois representations. " R. Stanley (Massachusetts Institute of Technology), "Some interesting hyperplane arrangements. " F. Rodriguez Villegas (Princeton University), "Modular Mahler measures. " T. Wooley (University of Michigan), "Diophantine problems in many variables: The role of additive number theory. " D. Zeilberger (Temple University), "Reverse engineering in combinatorics and number theory. " The papers in this volume provide an accurate picture of many of the topics presented at the conference including contributions from four of the plenary lectures."
This book provides an introduction to four central problems in analytic number theory. These are (1) the problem of estimating the number of integerpoints in planar domains (2) the problem of the distribution of prime numbers in the sequence of all natural numbers and in arithmetic progressions (3) Goldbach's problem on sums of primes, and (4) Waring's problem on sums of k-th powers. To solve these problems, one uses the fundamental methods of analytic number theory: complex integration, I.M.Vinogradov's method of trigonometric sums, and the circle method of G.H.Hardy, J.E.Littlewood, and S.Ramanujan. There are numerous exercises at the end of each chapter. These exercises either refine the theorems proved in the text, or lead to new ideas in number theory. The author also includes a section of hints for the solution of the exercises. The mathematical prerequisites for this volume are undergraduate courses in number theroy, mathematical analysis, and complex variables. The book would be an excellent text for a one or two semester course in analytic number theory for advanced undergraduates or graduate students.
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2* . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.
The Fifth Edition of one of the standard works on number theory, written by internationally-recognized mathematicians. Chapters are relatively self-contained for greater flexibility. New features include expanded treatment of the binomial theorem, techniques of numerical calculation and a section on public key cryptography. Contains an outstanding set of problems.
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world's leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography.
The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I. M. VinogradovAs estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and in addition they present purely arithmetic results concerning the solvability of equations in integers.
A Classical Introduction to Cryptography: Applications for Communications Security introduces fundamentals of information and communication security by providing appropriate mathematical concepts to prove or break the security of cryptographic schemes. This advanced-level textbook covers conventional cryptographic primitives and cryptanalysis of these primitives; basic algebra and number theory for cryptologists; public key cryptography and cryptanalysis of these schemes; and other cryptographic protocols, e.g. secret sharing, zero-knowledge proofs and undeniable signature schemes. A Classical Introduction to Cryptography: Applications for Communications Security is designed for upper-level undergraduate and graduate-level students in computer science. This book is also suitable for researchers and practitioners in industry. A separate exercise/solution booklet is available as well, please go to www.springeronline.com under author: Vaudenay for additional details on how to purchase this booklet.
There are many surprising connections between the theory of numbers, which is one of the oldest branches of mathematics, and computing and information theory. Number theory has important applications in computer organization and security, coding and cryptography, random number generation, hash functions, and graphics. Conversely, number theorists use computers in factoring large integers, determining primes, testing conjectures, and solving other problems. This book takes the reader from elementary number theory, via algorithmic number theory, to applied number theory in computer science. It introduces basic concepts, results, and methods, and discusses their applications in the design of hardware and software, cryptography, and security. It is aimed at undergraduates in computing and information technology, but will also be valuable to mathematics students interested in applications. In this 2nd edition full proofs of many theorems are added and some corrections are made.
This book contains 58 papers from among the 68 papers presented at the Fifth International Conference on Fibonacci Numbers and Their Applications which was held at the University of St. Andrews, St. Andrews, Fife, Scotland from July 20 to July 24, 1992. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its four predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. June 5, 1993 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Alwyn F. Horadam University of New England Armidale, N.S.W., Australia Andreas N. Philippou Government House Z50 Nicosia, Cyprus xxv THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Campbell, Colin M., Co-Chair Horadam, A.F. (Australia), Co-Chair Phillips, George M., Co-Chair Philippou, A.N. (Cyprus), Co-Chair Foster, Dorothy M.E. Ando, S. (Japan) McCabe, John H. Bergum, G.E. (U.S.A.) Filipponi, P. (Italy) O'Connor, John J.
Celebrating one of the leading figures in contemporary number theory - John H. Coates - on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another. With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
Like other introductions to number theory, this one includes the usual curtsy to divisibility theory, the bow to congruence, and the little chat with quadratic reciprocity. It also includes proofs of results such as Lagrange's Four Square Theorem, the theorem behind Lucas's test for perfect numbers, the theorem that a regular n-gon is constructible just in case phi(n) is a power of 2, the fact that the circle cannot be squared, Dirichlet's theorem on primes in arithmetic progressions, the Prime Number Theorem, and Rademacher's partition theorem. We have made the proofs of these theorems as elementary as possible. Unique to The Queen of Mathematics are its presentations of the topic of palindromic simple continued fractions, an elementary solution of Lucas's square pyramid problem, Baker's solution for simultaneous Fermat equations, an elementary proof of Fermat's polygonal number conjecture, and the Lambek-Moser-Wild theorem.
A translation of Hilberts "Theorie der algebraischen Zahlk rper" best known as the "Zahlbericht," first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.
The volume is devoted to the interaction of modern scientific computation and classical number theory. The contributions, ranging from effective finiteness results to efficient algorithms in elementary, analytical and algebraic number theory, provide a broad view of the methods and results encountered in the new and rapidly developing area of computational number theory. Topics covered include finite fields, quadratic forms, number fields, modular forms, elliptic curves and diophantine equations. In addition, two new number theoretical software packages, KANT and SIMATH, are described in detail with emphasis on algorithms in algebraic number theory.
"Number Theory and Related Fields" collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants - including Olympiad and Putnam competitors - as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
This volume contains refereed papers related to the lectures and talks given at a conference held in Siena (Italy) in June 2004. Also included are research papers that grew out of discussions among the participants and their collaborators. All the papers are research papers, but some of them also contain expository sections which aim to update the state of the art on the classical subject of special projective varieties and their applications and new trends like phylogenetic algebraic geometry. The topic of secant varieties and the classification of defective varieties is central and ubiquitous in this volume. Besides the intrinsic interest of the subject, it turns out that it is also relevant in other fields of mathematics like expressions of polynomials as sums of powers, polynomial interpolation, rank tensor computations, Bayesian networks, algebraic statistics and number theory.
Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitzs proof of the isoperimetric inequality using Fourier series. This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include: the geometric properties of convex bodies the study of Radon transforms the geometry of numbers the study of translational tilings using Fourier analysis irregularities in distributions Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis restriction problems for the Fourier transform The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part one is devoted to residue classes and quadratic residues. In part two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. part three is devoted to Kummer¿s theory of cyclotomic fields, and includes Bernoulli numbers and the proof of Fermat¿s Last Theorem for regular prime exponents. Finally, in part four, the emphasis is on analytical methods and it includes Dirichlet¿s Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics, as suggested at the end of the book.
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of PrA1/4fer rings is discussed from the geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of PrA1/4fer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties). The book concludes with a brief chapter discussing the bibliographic references available on the material presented, and a short history of the major developments within the field. |
![]() ![]() You may like...
Almost Periodic and Almost Automorphic…
Gaston M N'Gu er ekata
Hardcover
R3,611
Discovery Miles 36 110
Handbook of Reinforcement Learning and…
Kyriakos G. Vamvoudakis, Yan Wan, …
Hardcover
R6,510
Discovery Miles 65 100
Operating Systems for Supercomputers and…
Balazs Gerofi, Yutaka Ishikawa, …
Paperback
R3,872
Discovery Miles 38 720
Advances in Electronics, Communication…
Pradeep Kumar Mallick, Akash Kumar Bhoi, …
Hardcover
R9,657
Discovery Miles 96 570
Chaotic, Fractional, and Complex…
Mark Edelman, Elbert E. N. Macau, …
Hardcover
R3,578
Discovery Miles 35 780
Machine Learning and Deep Learning in…
Mehul Mahrishi, Kamal Kant Hiran, …
Hardcover
R7,312
Discovery Miles 73 120
Numerical Methods for Stochastic Partial…
Zhongqiang Zhang, George Em Karniadakis
Hardcover
|