![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
"Elements of the Theory of Numbers" teaches students how to
develop, implement, and test numerical methods for standard
mathematical problems. The authors have created a two-pronged
pedagogical approach that integrates analysis and algebra with
classical number theory. Making greater use of the language and
concepts in algebra and analysis than is traditionally encountered
in introductory courses, this pedagogical approach helps to instill
in the minds of the students the idea of the unity of mathematics.
"Elements of the Theory of Numbers" is a superb summary of
classical material as well as allowing the reader to take a look at
the exciting role of analysis and algebra in number theory.
The contents of this volume range from expository papers on several aspects of number theory, intended for general readers (Steinhaus property of planar regions; experiments with computers; Diophantine approximation; number field sieve), to a collection of research papers for specialists, which are at prestigious journal level. Thus, Number Theory and Its Applications leads the reader in many ways not only to the state of the art of number theory but also to its rich garden.
While the theory of transcendental numbers is a fundamental and important branch of number theory, most mathematicians know only its most elementary results. The aim of "Making Transcendence Transparent" is to provide the reader with an understanding of the basic principles and tools of transcendence theory and an intuitive framework within which the major results can be appreciated and their proofs can be understood. The book includes big picture overviews of the over-arching ideas, and general points of attack in particular arguments, so the reader will enjoy and appreciate the panoramic view of transcendence. It is designed to appeal to interested mathematicians, graduate students, and advanced undergraduates.
The Guinness Book made records immensely popular. This book is devoted, at first glance, to present records concerning prime numbers. But it is much more. It explores the interface between computations and the theory of prime numbers. The book contains an up-to-date historical presentation of the main problems about prime numbers, as well as many fascinating topics, including primality testing. It is written in a language without secrets, and thoroughly accessible to everyone. The new edition has been significantly improved due to a smoother presentation, many new topics and updated records.
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat's problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.
The purpose of this book is to describe the classical problems in additive number theory, and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools to attack these problems. This book is intended for students who want to learn additive number theory, not for experts who already know it. The prerequisites for this book are undergraduate courses in number theory and real analysis.
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions a [ Algebraic numbers a [ Algebraic geometry a [ Height functions a [ The abc-conjecture a [ Roth's theorem a [ Subspace theorems a [ Vojta's conjectures a [ L-functions.
Many classical problems in additive number theory are direct problems, in which one starts with a set "A" of natural numbers and an integer "H -> 2," and tries to describe the structure of the sumset "hA" consisting of all sums of "h" elements of "A." By contrast, in an inverse problem, one starts with a sumset "hA," and attempts to describe the structure of the underlying set "A." In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an "n"-dimensional arithmetic progression. "
The aim of this book is to illustrate by significant special examples three aspects of the theory of Diophantine approximations: the formal relationships that exist between counting processes and the functions entering the theory; the determination of these functions for numbers given as classical numbers; and certain asymptotic estimates holding almost everywhere.Each chapter works out a special case of a much broader general theory, as yet unknown. Indications for this are given throughout the book, together with reference to current publications. The book may be used in a course in number theory, whose students will thus be put in contact with interesting but accessible problems on the ground floor of mathematics.
This book reproduces, with minor changes, the notes prepared for a course given at Brigham Young University during the academic year 1984-1985. It is intended to be an introduction to the theory of numbers. The audience consisted largely of undergraduate students with no more background than high school mathematics. The presentation was thus kept as elementary and self-contained as possible. However, because the discussion was, generally, carried far enough to introduce the audience to some areas of current research, the book should also be useful to graduate students. The only prerequisite to reading the book is an interest in and aptitude for mathe matics. Though the topics may seem unrelated, the study of diophantine equations has been our main goal. I am indebted to several mathematicians whose published as well as unpublished work has been freely used throughout this book. In particular, the Phillips Lectures at Haverford College given by Professor John T. Tate have been an important source of material for the book. Some parts of Chapter 5 on algebraic curves are, for example, based on these lectures."
This book is the first volume of proceedings from the joint conference X International Symposium "Quantum Theory and Symmetries" (QTS-X) and XII International Workshop "Lie Theory and Its Applications in Physics" (LT-XII), held on 19-25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.
This book surveys the current state of the "small" sieve methods developed by Brun, Selberg and later workers.. A self-contained treatment is given to topics that are of central importance in the subject. These include the upper bound method of Selberg, Brun's method, Rosser's sieve as developed by Iwaniec, with a bilinear form of the remainder term, the sieve with weights, and the use of Selberg's ideas in deriving lower-bound sieves. Further developments are introduced with the support of references t. The book is suitable for university graduates making their first acquaintance with the subject, leading them towards the frontiers of modern research and unsolved problems in the subject area.
From September 13 to 17 in 1999, the First China-Japan Seminar on Number Theory was held in Beijing, China, which was organized by the Institute of Mathematics, Academia Sinica jointly with Department of Mathematics, Peking University. TE: m Japanese Professors and eighteen Chinese Professors attended this seminar. Professor Yuan Wang was the chairman, and Professor Chengbiao Pan was the vice-chairman. This seminar was planned and prepared by Professor Shigeru Kanemitsu and the first-named editor. Talks covered various research fields including analytic number theory, algebraic number theory, modular forms and transcendental number theory. The Great Wall and acrobatics impressed Japanese visitors. From November 29 to December 3 in 1999, an annual conference on analytic number theory was held in Kyoto, Japan, as one of the conferences supported by Research Institute of Mathematical Sciences (RIMS), Kyoto University. The organizer was the second-named editor. About one hundred Japanese scholars and some foreign visitors com ing from China, France, Germany and India attended this conference. Talks covered many branches in number theory. The scenery in Kyoto, Arashiyama Mountain and Katsura River impressed foreign visitors. An informal report of this conference was published as the volume 1160 of Surikaiseki Kenkyusho Kokyuroku (June 2000), published by RIMS, Ky oto University. The present book is the Proceedings of these two conferences, which records mainly some recent progress in number theory in China and Japan and reflects the academic exchanging between China and Japan."
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
For many years Serge Lang has given talks to undergraduates on selected items in mathematics which could be extracted at a level understandable by students who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book. The talks could be given by faculty, but even better, they may be given by students in seminars run by the students themselves. Undergraduates, and even some high school students, will enjoy the talks which cover prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, harmonic and symmetric polynomials, and more in a lively and informal style.
This book is designed for a computationally intensive graduate course based around a collection of classical unsolved extremal problems for polynomials. These problems, all of which lend themselves to extensive computational exploration, live at the interface of analysis, combinatorics and number theory so the techniques involved are diverse.A main computational tool used is the LLL algorithm for finding small vectors in a lattice. Many exercises and open research problems are included. Indeed one aim of the book is to tempt the able reader into the rich possibilities for research in this area. Peter Borwein is Professor of Mathematics at Simon Fraser University and the Associate Director of the Centre for Experimental and Constructive Mathematics. He is also the recipient of the Mathematical Association of America's Chauvenet Prize and the Merten M. Hasse Prize for expository writing in mathematics.
The central theme of this book is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The book contains more than 350 exercises and the text is largely self-contained. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five appendices on these techniques.
This book is divided into two parts. The first part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. There are two principal topics: classification of quadratic forms and quadratic Diophantine equations. The second topic is a new framework which contains the investigation of Gauss on the sums of three squares as a special case. To make the book concise, the author proves some basic theorems in number theory only in some special cases. However, the book is self-contained when the base field is the rational number field, and the main theorems are stated with an arbitrary number field as the base field. So the reader familiar with class field theory will be able to learn the arithmetic theory of quadratic forms with no further references.
Proceedings of the Vth Nordic Summer School in Mathematics in Oslo, August 5-25, 1970
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
This volume presents the Proceedings of the Eighth International Conference on Fibonacci Numbers and their Applications, held in Rochester, New York, in June 1998. All papers have been carefully refereed for content and originality and represent a continuation of the work of previous conferences. This book, describing recent discoveries and encouraging future research, shows the growing interest in and the importance of the pure and applied aspects of Fibonacci Numbers in many different areas of science. Audience: This volume will be of interest to graduate students and research mathematicians whose work involves number theory, combinatorics, algebraic number theory, field theory and polynomials, finite geometry and special functions.
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars' GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems. |
![]() ![]() You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,831
Discovery Miles 18 310
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,474
Discovery Miles 34 740
|