![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another. With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
There are many surprising connections between the theory of numbers, which is one of the oldest branches of mathematics, and computing and information theory. Number theory has important applications in computer organization and security, coding and cryptography, random number generation, hash functions, and graphics. Conversely, number theorists use computers in factoring large integers, determining primes, testing conjectures, and solving other problems. This book takes the reader from elementary number theory, via algorithmic number theory, to applied number theory in computer science. It introduces basic concepts, results, and methods, and discusses their applications in the design of hardware and software, cryptography, and security. It is aimed at undergraduates in computing and information technology, but will also be valuable to mathematics students interested in applications. In this 2nd edition full proofs of many theorems are added and some corrections are made.
The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I. M. VinogradovAs estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and in addition they present purely arithmetic results concerning the solvability of equations in integers.
For many years Serge Lang has given talks to undergraduates on selected items in mathematics which could be extracted at a level understandable by students who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book. The talks could be given by faculty, but even better, they may be given by students in seminars run by the students themselves. Undergraduates, and even some high school students, will enjoy the talks which cover prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, harmonic and symmetric polynomials, and more in a lively and informal style.
Like other introductions to number theory, this one includes the usual curtsy to divisibility theory, the bow to congruence, and the little chat with quadratic reciprocity. It also includes proofs of results such as Lagrange's Four Square Theorem, the theorem behind Lucas's test for perfect numbers, the theorem that a regular n-gon is constructible just in case phi(n) is a power of 2, the fact that the circle cannot be squared, Dirichlet's theorem on primes in arithmetic progressions, the Prime Number Theorem, and Rademacher's partition theorem. We have made the proofs of these theorems as elementary as possible. Unique to The Queen of Mathematics are its presentations of the topic of palindromic simple continued fractions, an elementary solution of Lucas's square pyramid problem, Baker's solution for simultaneous Fermat equations, an elementary proof of Fermat's polygonal number conjecture, and the Lambek-Moser-Wild theorem.
A translation of Hilberts "Theorie der algebraischen Zahlk rper" best known as the "Zahlbericht," first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.
"Number Theory and Related Fields" collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.
This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex $L$-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.
Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitzs proof of the isoperimetric inequality using Fourier series. This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include: the geometric properties of convex bodies the study of Radon transforms the geometry of numbers the study of translational tilings using Fourier analysis irregularities in distributions Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis restriction problems for the Fourier transform The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used
This volume contains refereed papers related to the lectures and talks given at a conference held in Siena (Italy) in June 2004. Also included are research papers that grew out of discussions among the participants and their collaborators. All the papers are research papers, but some of them also contain expository sections which aim to update the state of the art on the classical subject of special projective varieties and their applications and new trends like phylogenetic algebraic geometry. The topic of secant varieties and the classification of defective varieties is central and ubiquitous in this volume. Besides the intrinsic interest of the subject, it turns out that it is also relevant in other fields of mathematics like expressions of polynomials as sums of powers, polynomial interpolation, rank tensor computations, Bayesian networks, algebraic statistics and number theory.
This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part one is devoted to residue classes and quadratic residues. In part two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. part three is devoted to Kummer¿s theory of cyclotomic fields, and includes Bernoulli numbers and the proof of Fermat¿s Last Theorem for regular prime exponents. Finally, in part four, the emphasis is on analytical methods and it includes Dirichlet¿s Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics, as suggested at the end of the book.
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of PrA1/4fer rings is discussed from the geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of PrA1/4fer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties). The book concludes with a brief chapter discussing the bibliographic references available on the material presented, and a short history of the major developments within the field.
Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane 's Online Encyclopedia of Integer Sequences, at the end of several of the sections.
Previous publications on the generalization of the Thomae formulae to "Zn" curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formulafor "Zn" Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory."
Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.
This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erd s, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to be stimulating.
'Et moi, ..., si j'avait su comment en revcnrr, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back. Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
NA(c)ron models were invented by A. NA(c)ron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of NA(c)ron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about NA(c)ron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of NA(c)ron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of NA(c)ron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between NA(c)ron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.
Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra.
Paul Turan, one of the greatest Hungarian mathematicians, was born 100 years ago, on August 18, 1910. To celebrate this occasion the Hungarian Academy of Sciences, the Alfred Renyi Institute of Mathematics, the Janos Bolyai Mathematical Society and the Mathematical Institute of Eoetvoes Lorand University organized an international conference devoted to Paul Turan's main areas of interest: number theory, selected branches of analysis, and selected branches of combinatorics. The conference was held in Budapest, August 22-26, 2011. Some of the invited lectures reviewed different aspects of Paul Turan's work and influence. Most of the lectures allowed participants to report about their own work in the above mentioned areas of mathematics.
|
You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
Combinatorial Game Theory - A Special…
Richard J. Nowakowski, Bruce M. Landman, …
Hardcover
R5,739
Discovery Miles 57 390
|