![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
In this enjoyable and lightheaded volume, he gathers a plethora of cultural, biological, geometrical, algebraic, and planetary phenomena of our lives related to the number five. He investigates these occurrences in various facets of life on earth and seeks plausible explanations for some of them and hypothesizes about some others while widening your horizon.
Over a career that spanned 60 years, Ronald L. Graham (known to all as Ron) made significant contributions to the fields of discrete mathematics, number theory, Ramsey theory, computational geometry, juggling and magical mathematics, and many more. Ron also was a mentor to generations of mathematicians, he gave countless talks and helped bring mathematics to a wider audience, and he held signifi cant leadership roles in the mathematical community. This volume is dedicated to the life and memory of Ron Graham, and includes 20-articles by leading scientists across a broad range of subjects that refl ect some of the many areas in which Ron worked.
Inspired by the September 2016 conference of the same name, this second volume highlights recent research in a wide range of topics in contemporary number theory and arithmetic geometry. Research reports from projects started at the conference, expository papers describing ongoing research, and contributed papers from women number theorists outside the conference make up this diverse volume. Topics cover a broad range of topics such as arithmetic dynamics, failure of local-global principles, geometry in positive characteristics, and heights of algebraic integers. The use of tools from algebra, analysis and geometry, as well as computational methods exemplifies the wealth of techniques available to modern researchers in number theory. Exploring connections between different branches of mathematics and combining different points of view, these papers continue the tradition of supporting and highlighting the contributions of women number theorists at a variety of career stages. Perfect for students and researchers interested in the field, this volume provides an easily accessible introduction and has the potential to inspire future work.
This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial. Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19th century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed. This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers who are not specialists can learn about this fascinating subject. Furthermore, researchers who work on certificates of positivity or use them in applications will find this a useful reference for their work.
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 -29 September 2017 at Noah's On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
Elwyn Berlekamp, John Conway, and Richard Guy wrote 'Winning Ways for your Mathematical Plays' and turned a recreational mathematics topic into a full mathematical fi eld. They combined set theory, combinatorics, codes, algorithms, and a smattering of other fi elds, leavened with a liberal dose of humor and wit. Their legacy is a lively fi eld of study that still produces many surprises. Despite being experts in other areas of mathematics, in the 50 years since its publication, they also mentored, talked, and played games, giving their time, expertise, and guidance to several generations of mathematicians. This volume is dedicated to Elwyn Berlekamp, John Conway, and Richard Guy. It includes 20 contributions from colleagues that refl ect on their work in combinatorial game theory.
This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.
This book offers a unique account on the life and works of Srinivasa Ramanujan-often hailed as the greatest "natural" mathematical genius. Sharing valuable insights into the many stages of Ramanujan's life, this book provides glimpses into his prolific research on highly composite numbers, partitions, continued fractions, mock theta functions, arithmetic, and hypergeometric functions which led the author to discover a new summation theorem. It also includes the list of Ramanujan's collected papers, letters and other material present at the Wren Library, Trinity College in Cambridge, UK. This book is a valuable resource for all readers interested in Ramanujan's life, work and indelible contributions to mathematics.
This book presents a printed testimony for the fact that George Andrews, one of the world's leading experts in partitions and q-series for the last several decades, has passed the milestone age of 80. To honor George Andrews on this occasion, the conference "Combinatory Analysis 2018" was organized at the Pennsylvania State University from June 21 to 24, 2018. This volume comprises the original articles from the Special Issue "Combinatory Analysis 2018 - In Honor of George Andrews' 80th Birthday" resulting from the conference and published in Annals of Combinatorics. In addition to the 37 articles of the Andrews 80 Special Issue, the book includes two new papers. These research contributions explore new grounds and present new achievements, research trends, and problems in the area. The volume is complemented by three special personal contributions: "The Worlds of George Andrews, a daughter's take" by Amy Alznauer, "My association and collaboration with George Andrews" by Krishna Alladi, and "Ramanujan, his Lost Notebook, its importance" by Bruce Berndt. Another aspect which gives this Andrews volume a truly unique character is the "Photos" collection. In addition to pictures taken at "Combinatory Analysis 2018", the editors selected a variety of photos, many of them not available elsewhere: "Andrews in Austria", "Andrews in China", "Andrews in Florida", "Andrews in Illinois", and "Andrews in India". This volume will be of interest to researchers, PhD students, and interested practitioners working in the area of Combinatory Analysis, q-Series, and related fields.
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
This is the first extensive biography of the influential German mathematician, Peter Gustav Lejeune Dirichlet (1805 - 1859). Dirichlet made major contributions to number theory in addition to clarifying concepts such as the representation of functions as series, the theory of convergence, and potential theory. His mathematical methodology was explicitly based on a thorough knowledge of the work of his predecessors and his belief in the underlying unity of the branches of mathematics. This unified approach is exemplified in a paper that effectively launched the field of analytic number theory. The same orientation pervaded his teaching, which had a profound influence on the work of many mathematicians of subsequent generations. Chapters dealing with his mathematical work alternate with biographical chapters that place Dirichlet's life and those of some of his notable associates in the context of the political, social, and artistic culture of the period. This book will appeal not only to mathematicians but also to historians of mathematics and sciences, and readers interested in the cultural and intellectual history of the nineteenth century.
This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry. Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research. These areas are interrelated with various other mathematical fields such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics. Keeping up with the fast development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura (Kyushu University) launched a series of seminars on the topic, the first of which took place on November 2009 in Kerkennah Islands, the second in Sousse on December 2011, and the third in Hammamet on December 2013. The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaboration of many teams in several corners. Many experts from both countries have been involved.
This book provides the first extensive survey of block ciphers following the Lai-Massey design paradigm. After the introduction, with historical remarks, the author structures the book into a chapter on the description of the PES, IDEA and other related ciphers, followed by a chapter on cryptanalysis of these ciphers, and another chapter on new cipher designs. The appendices include surveys of cryptographic substitution boxes and of MDS codes. This comprehensive treatment can serve as a reference source for researchers, students and practitioners.
This monograph provides an accessible and comprehensive introduction to James Arthur's invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur's research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur's work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur's proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G' = GL(n) and its inner form G< and for functions with matching orbital integrals. Arthur's Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory.
This book deals with the development of Diophantine problems starting with Thue's path breaking result and culminating in Roth's theorem with applications. It discusses classical results including Hermite-Lindemann-Weierstrass theorem, Gelfond-Schneider theorem, Schmidt's subspace theorem and more. It also includes two theorems of Ramachandra which are not widely known and other interesting results derived on the values of Weierstrass elliptic function. Given the constantly growing number of applications of linear forms in logarithms, it is becoming increasingly important for any student wanting to work in this area to know the proofs of Baker's original results. This book presents Baker's original results in a format suitable for graduate students, with a focus on presenting the content in an accessible and simple manner. Each student-friendly chapter concludes with selected problems in the form of "Exercises" and interesting information presented as "Notes," intended to spark readers' curiosity.
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.
This book is an exploration of philosophical questions about infinity. Graham Oppy examines how the infinite lurks everywhere, both in science and in our ordinary thoughts about the world. He also analyses the many puzzles and paradoxes that follow in the train of the infinite. Even simple notions, such as counting, adding and maximising present serious difficulties. Other topics examined include the nature of space and time, infinities in physical science, infinities in theories of probability and decision, the nature of part/whole relations, mathematical theories of the infinite, and infinite regression and principles of sufficient reason.
This lecture notes volume presents significant contributions from the "Algebraic Geometry and Number Theory" Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
This new and expanded monograph improves upon Mohan's earlier book, Residue Number Systems (Springer, 2002) with a state of the art treatment of the subject. Replete with detailed illustrations and helpful examples, this book covers a host of cutting edge topics such as the core function, the quotient function, new Chinese Remainder theorems, and large integer operations. It also features many significant applications to practical communication systems and cryptography such as FIR filters and elliptic curve cryptography. Starting with a comprehensive introduction to the basics and leading up to current research trends that are not yet widely distributed in other publications, this book will be of interest to both researchers and students alike.
This edited collection of chapters, authored by leading experts, provides a complete and essentially self-contained construction of 3-fold and 4-fold klt flips. A large part of the text is a digest of Shokurov's work in the field and a concise, complete and pedagogical proof of the existence of 3-fold flips is presented. The text includes a ten page glossary and is accessible to students and researchers in algebraic geometry. |
![]() ![]() You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,831
Discovery Miles 18 310
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,474
Discovery Miles 34 740
|