![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog's theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz's rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties.
"Recent Advances in Harmonic Analysis and Applications" features selected contributions from the AMS conference which took place at Georgia Southern University, Statesboro in 2011 in honor of Professor Konstantin Oskolkov's 65th birthday. The contributions are based on two special sessions, namely "Harmonic Analysis and Applications" and "Sparse Data Representations and Applications." Topics covered range from Banach space geometry to classical harmonic analysis and partial differential equations.Survey and expository articles by leading experts in their corresponding fields are included, and the volume also features selected high quality papers exploring new results and trends in Muckenhoupt-Sawyer theory, orthogonal polynomials, trigonometric series, approximation theory, Bellman functions and applications in differential equations. Graduate students and researchers in analysis will be particularly interested in the articles which emphasize remarkable connections between analysis and analytic number theory. The readers will learn about recent mathematical developments and directions for future work in the unexpected and surprising interaction between abstract problems in additive number theory and experimentally discovered optical phenomena in physics. This book will be useful for number theorists, harmonic analysts, algorithmists in multi-dimensional signal processing and experts in physics and partial differential equations. "
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.
This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 "International Conference on Automorphic Forms and Number Theory," held in Muscat, Sultanate of Oman. The present volume includes original research as well as some surveys and outlines of research altogether providing a contemporary snapshot on the latest activities in the field and covering the topics of: Borcherds products Congruences and Codes Jacobi forms Siegel and Hermitian modular forms Special values of L-series Recently, the Sultanate of Oman became a member of the International Mathematical Society. In view of this development, the conference provided the platform for scientific exchange and collaboration between scientists of different countries from all over the world. In particular, an opportunity was established for a close exchange between scientists and students of Germany, Oman, and Japan. The conference was hosted by the Sultan Qaboos University and the German University of Technology in Oman.
The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers, where a function field of one variable is the analogue of a finite extension of Q, the field of rational numbers. The author does not ignore the geometric-analytic aspects of function fields, but leaves an in-depth examination from this perspective to others. Key topics and features: * Contains an introductory chapter on algebraic and numerical antecedents, including transcendental extensions of fields, absolute values on Q, and Riemann surfaces * Focuses on the Riemanna "Roch theorem, covering divisors, adeles or repartitions, Weil differentials, class partitions, and more * Includes chapters on extensions, automorphisms and Galois theory, congruence function fields, the Riemann Hypothesis, the Riemanna "Hurwitz Formula, applications of function fields to cryptography, class field theory, cyclotomic function fields, and Drinfeld modules * Explains both the similarities and fundamental differences between function fields and number fields * Includes many exercises and examples to enhance understanding and motivate further study The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra. The book can serve as a text for a graduate course in number theory or an advanced graduate topics course. Alternatively, chapters 1-4 can serve as the base of an introductory undergraduate course for mathematicsmajors, while chapters 5-9 can support a second course for advanced undergraduates. Researchers interested in number theory, field theory, and their interactions will also find the work an excellent reference.
The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found. The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of apositive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries'. Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.
This is an updated English translation of "Cohomologie Galoisienne", published more than 30 years ago as one of the very first Lecture Notes in Mathematics. It includes a reproduction of an influential paper of R. Steinberg, together with some new material and an expanded bibliography.
It has become clear that problem solving plays an extremely important role in mathematical research. This book is a collection of about 500 problems in algebraic number theory. They are systematically arranged to reveal the evolution of concepts and ideas of the subject. For this new edition the authors have added a new chapter and revised several sections.
This volume begins with a description of Alladi Ramakrishnan's remarkable scientific career and his grand vision that led to the creation of The Institute of Mathematical Sciences (MATSCIENCE), in Madras (now Chennai), India, in 1962. The lists of his research publications, his PhD students, and other relevant facts relating to his eventful career are included. The inclusion of both research and survey articles by leading mathematicians, statisticians, and physicists who got to know Alladi Ramakrishnan over the years and admired his significant contributions to research and to the scientific profession, have been written and dedicated in this volume to Ramakrishnan's memory.
In August 1995 an international symposium on "Quasiconformal Mappings and Analysis" was held in Ann Arbor on the occasion of Professor Fred- erick W. Gehring's 70th birthday and his impending retirement from the Mathematics Department at the University of Michigan. The concept of the symposium was to feature broad survey talks on a wide array of topics related to Gehring's basic research contributions in the field of quasicon- formal mappings, emphasizing their relations to other parts of analysis. Principal speakers were Kari Astala, Albert Baernstein, Clifford Earle, Pe- ter Jones, Irwin Kra, OUi Lehto, Gaven Martin, Dennis Sullivan, and Jussi Vaisala. Financial support was provided by the National Science Founda- tion, with additional grants from the University of Michigan and from the Institute for Mathematics and its Applications. The symposium was a great success. The speakers rose to the occasion and presented excellent survey lectures. The present volume was conceived as a means for disseminating those expositions to a wider audience. Ad- ditional mathematicians, some of whom had not been able to attend the symposium, were invited to contribute similar articles. The result is a fit- ting tribute to Fred Gehring's pre-eminent role in developing the theory of quasiconformal mappings, through his own research and writings and lec- tures, and through his supervision of graduate students. The volume begins with descriptions of Gehring's mathematical career and an overview of his research achievements.
Featuring the clearly presented and expertly-refereed contributions of leading researchers in the field of approximation theory, this volume is a collection of the best contributions at the Third International Conference on Applied Mathematics and Approximation Theory, an international conference held at TOBB University of Economics and Technology in Ankara, Turkey, on May 28-31, 2015. The goal of the conference, and this volume, is to bring together key work from researchers in all areas of approximation theory, covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. These topics are presented both within their traditional context of approximation theory, while also focusing on their connections to applied mathematics. As a result, this collection will be an invaluable resource for researchers in applied mathematics, engineering and statistics.
Preliminary Text. Do not use. Sphere Packings is one of the most attractive and challenging subjects in mathematics. Almost 4 centuries ago, Kepler studied the densities of sphere packings and made his famous conjecture. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with othe subjects found. Thus, though some of its original problems are still open, sphere packings has been developed into an important discipline. This book tries to give a full account of this fascinating subject, especially its local aspects, discrete aspects and its proof methods.
This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of E. Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry.
This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of E. Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry.
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
The second volume of this work contains Parts 2 and 3 of the "Handbook of Coding Theory". Part 2, "Connections", is devoted to connections between coding theory and other branches of mathematics and computer science. Part 3, "Applications", deals with a variety of applications for coding.
This volume contains the proceedings of the very successful second China-Japan Seminar held in lizuka, Fukuoka, Japan, during March 12-16, 2001 under the support of the Japan Society for the Promotion of Science (JSPS) and the National Science Foundation of China (NSFC), and some invited papers of eminent number-theorists who visited Japan during 1999-2001 at the occasion of the Conference at the Research Institute of Mathematical Sciences (RIMS), Kyoto University. The proceedings of the 1st China-Japan Seminar held in September 1999 in Beijing has been published recently {2002) by Kluwer as DEVM 6 which also contains some invited papers. The topics of that volume are, however, restricted to analytic number theory and many papers in this field are assembled. In this volume, we return to the lines of the previous one "Number Theory and its Applications," published as DEVM 2 by Kluwer in 1999 and uphold the spirit of presenting various topics in number theory and related areas with possible applica tions, in a unified manner, and this time in nearly a book form with a well-prepared index. We accomplish this task by collecting highly informative and readable survey papers (including half-survey type papers), giving overlooking surveys of the hith erto obtained results in up-to-the-hour form with insight into the new developments, which are then analytically continued to a collection of high standard research papers which are concerned with rather diversed areas and will give good insight into new researches in the new century."
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. It includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions and Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is the systematic use, in proofs, of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. Two chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adelic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Moebius function, Euler's totient function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Regis de la Breteche, Christian Elsholtz, John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivic, Geoffrey Iyer, Jerzy Kaczorowski, Daniel M. Kane, Sergei Konyagin, Dimitris Koukoulopoulos, Michel L. Lapidus, Oleg Lazarev, Andrew H. Ledoan, Robert J. Lemke Oliver, Florian Luca, James Maynard, Steven J. Miller, Hugh L. Montgomery, Melvyn B. Nathanson, Ashkan Nikeghbali, Alberto Perelli, Amalia Pizarro-Madariaga, Janos Pintz, Paul Pollack, Carl Pomerance, Michael Th. Rassias, Maksym Radziwill, Joel Rivat, Andras Sarkoezy, Jeffrey Shallit, Terence Tao, Gerald Tenenbaum, Laszlo Toth, Tamar Ziegler, Liyang Zhang.
Introducing the Collins Modern Classics, a series featuring some of the most significant books of recent times, books that shed light on the human experience - classics which will endure for generations to come. 'Maths is one of the purest forms of thought, and to outsiders mathematicians may seem almost otherworldly' In 1963, schoolboy Andrew Wiles stumbled across the world's greatest mathematical problem: Fermat's Last Theorem. Unsolved for over 300 years, he dreamed of cracking it. Combining thrilling storytelling with a fascinating history of scientific discovery, Simon Singh uncovers how an Englishman, after years of secret toil, finally solved mathematics' most challenging problem. Fermat's Last Theorem is remarkable story of human endeavour, obsession and intellectual brilliance, sealing its reputation as a classic of popular science writing. 'To read it is to realise that there is a world of beauty and intellectual challenge that is denied to 99.9 per cent of us who are not high-level mathematicians' The Times
The book introduces new techniques which imply rigorous lower bounds on the complexity of some number theoretic and cryptographic problems. These methods and techniques are based on bounds of character sums and numbers of solutions of some polynomial equations over finite fields and residue rings. It also contains a number of open problems and proposals for further research. We obtain several lower bounds, exponential in terms of logp, on the de grees and orders of * polynomials; * algebraic functions; * Boolean functions; * linear recurring sequences; coinciding with values of the discrete logarithm modulo a prime p at suf ficiently many points (the number of points can be as small as pI/He). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the right most bit of the discrete logarithm and defines whether the argument is a quadratic residue. We also obtain non-trivial upper bounds on the de gree, sensitivity and Fourier coefficients of Boolean functions on bits of x deciding whether x is a quadratic residue. These results are used to obtain lower bounds on the parallel arithmetic and Boolean complexity of computing the discrete logarithm. For example, we prove that any unbounded fan-in Boolean circuit. of sublogarithmic depth computing the discrete logarithm modulo p must be of superpolynomial size. |
You may like...
Handbook of Software Engineering
Sungdeok Cha, Richard N. Taylor, …
Hardcover
R5,237
Discovery Miles 52 370
Monster Trucks Scissors Skills coloring…
Monster Truck Publishing
Hardcover
R528
Discovery Miles 5 280
Advances in Production Management…
Bruno Vallespir, Thecle Alix
Hardcover
R2,787
Discovery Miles 27 870
IT Security Management - IT Securiteers…
Alberto Partida, Diego Andina
Hardcover
R2,801
Discovery Miles 28 010
Collaborative Systems for Smart…
Luis M. Camarinha-Matos, Hamideh Afsarmanesh
Hardcover
R2,809
Discovery Miles 28 090
|