![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takacs. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; "The 8th Conference on Lattice Path Combinatorics and Applications" provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.
With a foreword by Freeman Dyson, the handbook brings together
leading mathematicians and physicists to offer a comprehensive
overview of random matrix theory, including a guide to new
developments and the diverse range of applications of this
approach.
This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces. Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject. These proceedings reflect the topics of the lectures presented during the workshop 'Beauville surfaces and groups 2012', held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.
During the early part of the last century, Ferdinand Georg
Frobenius (1849-1917) raised the following problem, known as the
Frobenius Problem (FP): given relatively prime positive integers
a1,, an, find the largest natural number (called the Frobenius
number and denoted by g(a1,, an) that is not representable as a
nonnegative integer combination of a1,, an.
This book establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space. A wealth of previously unpublished material is also featured, including Chapter 5 on numerical flatness criteria, Chapter 7 on K-flatness, and Chapter 9 on hulls and husks.
This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.
Drawing primarily from historical examples, this book explains the tremendous role that numbers and, in particular, mathematics play in all aspects of our civilization and culture. The lively style and illustrative examples will engage the reader who wants to understand the many ways in which mathematics enables science, technology, art, music, politics, and rational foundations of human thought. Each chapter focuses on the influence of mathematics in a specific field and on a specific historical figure, such as "Pythagoras: Numbers and Symbol"; "Bach: Numbers and Music"; "Descartes: Numbers and Space."
While the valuation of standard American option contracts has now achieved a fair degree of maturity, much work remains to be done regarding the new contractual forms that are constantly emerging in response to evolving economic conditions and regulations. Focusing on recent developments in the field, American-Style Derivatives provides an extensive treatment of option pricing with an emphasis on the valuation of American options on dividend-paying assets. The book begins with a review of valuation principles for European contingent claims in a financial market in which the underlying asset price follows an Ito process and the interest rate is stochastic and then extends the analysis to American contingent claims. In this context the author lays out the basic valuation principles for American claims and describes instructive representation formulas for their prices. The results are applied to standard American options in the Black-Scholes market setting as well as to a variety of exotic contracts such as barrier, capped, and multi-asset options. He also reviews numerical methods for option pricing and compares their relative performance. The author explains all the concepts using standard financial terms and intuitions and relegates proofs to appendices that can be found at the end of each chapter. The book is written so that the material is easily accessible not only to those with a background in stochastic processes and/or derivative securities, but also to those with a more limited exposure to those areas.
Natural numbers are the oldest human invention. This book describes their nature, laws, history and current status. It has seven chapters. The first five chapters contain not only the basics of elementary number theory for the convenience of teaching and continuity of reading, but also many latest research results. The first time in history, the traditional name of the Chinese Remainder Theorem is replaced with the Qin Jiushao Theorem in the book to give him a full credit for his establishment of this famous theorem in number theory. Chapter 6 is about the fascinating congruence modulo an integer power, and Chapter 7 introduces a new problem extracted by the author from the classical problems of number theory, which is out of the combination of additive number theory and multiplicative number theory.One feature of the book is the supplementary material after each section, there by broadening the reader's knowledge and imagination. These contents either discuss the rudiments of some aspects or introduce new problems or conjectures and their extensions, such as perfect number problem, Egyptian fraction problem, Goldbach's conjecture, the twin prime conjecture, the 3x + 1 problem, Hilbert Waring problem, Euler's conjecture, Fermat's Last Theorem, Laudau's problem and etc.This book is written for anyone who loves natural numbers, and it can also be read by mathematics majors, graduate students, and researchers. The book contains many illustrations and tables. Readers can appreciate the author's sensitivity of history, broad range of knowledge, and elegant writing style, while benefiting from the classical works and great achievements of masters in number theory.
Some of the central topics in number theory, presnted in a simple and concise fashion. The author covers an amazing amount of material, despite a leisurely pace and emphasis on readability. His heartfelt enthusiasm enables readers to see what is magical about the subject. All the topics are presented in a refreshingly elegant and efficient manner with clever examples and interesting problems throughout. The text is suitable for a graduate course in analytic number theory.
Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students.
When looking for applications of ring theory in geometry, one first thinks of algebraic geometry, which sometimes may even be interpreted as the concrete side of commutative algebra. However, this highly de veloped branch of mathematics has been dealt with in a variety of mono graphs, so that - in spite of its technical complexity - it can be regarded as relatively well accessible. While in the last 120 years algebraic geometry has again and again attracted concentrated interes- which right now has reached a peak once more -, the numerous other applications of ring theory in geometry have not been assembled in a textbook and are scattered in many papers throughout the literature, which makes it hard for them to emerge from the shadow of the brilliant theory of algebraic geometry. It is the aim of these proceedings to give a unifying presentation of those geometrical applications of ring theo y outside of algebraic geometry, and to show that they offer a considerable wealth of beauti ful ideas, too. Furthermore it becomes apparent that there are natural connections to many branches of modern mathematics, e. g. to the theory of (algebraic) groups and of Jordan algebras, and to combinatorics. To make these remarks more precise, we will now give a description of the contents. In the first chapter, an approach towards a theory of non-commutative algebraic geometry is attempted from two different points of view."
Complex analysis is a classic and central area of mathematics, which is studies and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much-awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter.
Building on the tradition of an outstanding series of conferences at the University of Illinois at Urbana-Champaign, the organizers attracted an international group of scholars to open the new Millennium with a conference that reviewed the current state of number theory research and pointed to future directions in the field. The conference was the largest general number theory conference in recent history, featuring a total of 159 talks, with the plenary lectures given by George Andrews, Jean Bourgain, Kevin Ford, Ron Graham, Andrew Granville, Roger Heath-Brown, Christopher Hooley, Winnie Li, Kumar Murty, Mel Nathanson, Ken Ono, Carl Pomerance, Bjorn Poonen, Wolfgang Schmidt, Chris Skinner, K. Soundararajan, Robert Tijdeman, Robert Vaughan, and Hugh Williams. The Proceedings Volumes of the conference review some of the major number theory achievements of this century and to chart some of the directions in which the subject will be heading during the new century. These volumes will serve as a useful reference to researchers in the area and an introduction to topics of current interest in number theory for a general audience in mathematics.
Automatic sequences are sequences over a finite alphabet generated by a finite-state machine. This book presents a novel viewpoint on automatic sequences, and more generally on combinatorics on words, by introducing a decision method through which many new results in combinatorics and number theory can be automatically proved or disproved with little or no human intervention. This approach to proving theorems is extremely powerful, allowing long and error-prone case-based arguments to be replaced by simple computations. Readers will learn how to phrase their desired results in first-order logic, using free software to automate the computation process. Results that normally require multipage proofs can emerge in milliseconds, allowing users to engage with mathematical questions that would otherwise be difficult to solve. With more than 150 exercises included, this text is an ideal resource for researchers, graduate students, and advanced undergraduates studying combinatorics, sequences, and number theory.
This carefully prepared manuscript presents elimination theory in weighted projective spaces over arbitrary noetherian commutative base rings. Elimination theory is a classical topic in commutative algebra and algebraic geometry, and it has become of renewed importance recently in the context of applied and computational algebra. This monograph provides a valuable complement to sparse elimination theory in that it presents in careful detail the algebraic difficulties from working over general base rings. This is essential for applications in arithmetic geometry and many other places. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples.
This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
Devised in the 19th century, Gauss and Jacobi Sums are classical formulas that form the basis for contemporary research in many of today's sciences. This book offers readers a solid grounding on the origin of these abstract, general theories. Though the main focus is on Gauss and Jacobi, the book does explore other relevant formulas, including Cauchy.
Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is, the theory of those numbers that cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory, which continues to see rapid progress today. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindzuk's solution to the Mahler conjecture. This edition includes an introduction written by David Masser describing Baker's achievement, surveying the content of each chapter and explaining the main argument of Baker's method in broad strokes. A new afterword lists recent developments related to Baker's work.
This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of , before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data.
What are numbers? Where do they come from? Are there different kings of number? Why was Pythagoras fascinated by triangular and square numbers? Is there a link between perfect numbers and primes? In this enlightening illustrated pocket book, mathemagician Oliver Linton reveals the wonderful world of numbers, visiting the questions and answers of great number theorists along the way, from Euclid to Euler, Fibonacci to Fermat, and Archimedes to Gauss. No calculator needed! WOODEN BOOKS are small but packed with information. "Fascinating" FINANCIAL TIMES. "Beautiful" LONDON REVIEW OF BOOKS. "Rich and Artful" THE LANCET. "Genuinely mind-expanding" FORTEAN TIMES. "Excellent" NEW SCIENTIST. "Stunning" NEW YORK TIMES. Small books, big ideas.
The challenge of dividing an asset fairly, from cakes to more important properties, is of great practical importance in many situations. Since the famous Polish school of mathematicians (Steinhaus, Banach, and Knaster) introduced and described algorithms for the fair division problem in the 1940s, the concept has been widely popularized. This book gathers into one readable and inclusive source a comprehensive discussion of the state of the art in cake-cutting problems for both the novice and the professional. It offers a complete treatment of all cake-cutting algorithms under all the considered definitions of "fair" and presents them in a coherent, reader-friendly manner. Robertson and Webb have brought this elegant problem to life for both the bright high school student and the professional researcher.
The research of Jonathan Borwein has had a profound impact on optimization, functional analysis, operations research, mathematical programming, number theory, and experimental mathematics. Having authored more than a dozen books and more than 300 publications, Jonathan Borwein is one of the most productive Canadian mathematicians ever. His research spans pure, applied, and computational mathematics as well as high performance computing, and continues to have an enormous impact: MathSciNet lists more than 2500 citations by more than 1250 authors, and Borwein is one of the 250 most cited mathematicians of the period 1980-1999. He has served the Canadian Mathematics Community through his presidency (2000-02) as well as his 15 years of editing the CMS book series. Jonathan Borwein's vision and initiative have been crucial in initiating and developing several institutions that provide support for researchers with a wide range of scientific interests. A few notable examples include the Centre for Experimental and Constructive Mathematics and the IRMACS Centre at Simon Fraser University, the Dalhousie Distributed Research Institute at Dalhousie University, the Western Canada Research Grid, and the Centre for Computer Assisted Research Mathematics and its Applications, University of Newcastle. The workshops that were held over the years in Dr. Borwein's honor attracted high-caliber scientists from a wide range of mathematical fields. This present volume is an outgrowth of the workshop on 'Computational and Analytical Mathematics' held in May 2011 in celebration of Dr. Borwein's 60th Birthday. The collection contains various state-of-the-art research manuscripts and surveys presenting contributions that have risen from the conference, and is an excellent opportunity to survey state-of-the-art research and discuss promising research directions and approaches.
In 1996 the AMS awarded Goro Shimura the Steele Prize for Lifetime Achievement :" To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal, and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field.." 103 of Shimuras most important papers are collected in four volumes. Volume I contains his mathematical papers from 1954 to 1966 and some notes to the articles. |
You may like...
Wild Card - Let The Tarot Tell Your…
Jen Cownie, Fiona Lensvelt
Paperback
Illustrated Guide to Carving Tree Bark…
Rick Jensen, Jack A. Williams
Paperback
R348
Discovery Miles 3 480
Promoting Consumer Engagement Through…
Monika Gupta, Priya Jindal, …
Hardcover
R6,243
Discovery Miles 62 430
|