0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (54)
  • R250 - R500 (67)
  • R500+ (1,788)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory

Analytic Theory of Polynomials (Hardcover): Qazi Ibadur Rahman, Gerhard Schmeisser Analytic Theory of Polynomials (Hardcover)
Qazi Ibadur Rahman, Gerhard Schmeisser
R7,511 Discovery Miles 75 110 Ships in 12 - 19 working days

Presents easy to understand proofs of some of the most difficult results about polynomials demonstrated by means of applications.

Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations (Paperback,... Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations (Paperback, Softcover reprint of the original 2nd ed. 2016)
Audrey Terras
R3,162 Discovery Miles 31 620 Ships in 10 - 15 working days

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincare Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant +/-1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Computational Algebraic Number Theory (Paperback, 1993 ed.): M E Pohst Computational Algebraic Number Theory (Paperback, 1993 ed.)
M E Pohst
R1,387 Discovery Miles 13 870 Ships in 10 - 15 working days

Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker Vereinigung initiated an introductory graduate seminar on this topic in Dusseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. Contents: Introduction * Topics from finite fields * Arithmetic and polynomials * Factorization of polynomials * Topics from the geometry of numbers * Hermite normal form * Lattices * Reduction * Enumeration of lattice points * Algebraic number fields * Introduction * Basic Arithmetic * Computation of an integral basis * Integral closure * Round-Two-Method * Round-Four-Method * Computation of the unit group * Dirichlet's unit theorem and a regulator bound * Two methods for computing r independent units * Fundamental unit computation * Computation of the class group * Ideals and class number * A method for computing the class group * Appendix * The number field sieve * KANT * References * Index

Elementary Theory of L-functions and Eisenstein Series (Hardcover, New): Haruzo Hida Elementary Theory of L-functions and Eisenstein Series (Hardcover, New)
Haruzo Hida
R4,359 Discovery Miles 43 590 Ships in 12 - 19 working days

This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithmetic L-functions and p-adic L-functions. The approach is basically algebraic, and the treatment is elementary. No deep knowledge from algebraic geometry and representation theory is required. The author's main tool in dealing with these problems is taken from cohomology theory over Riemann surfaces, which is also explained in detail in the book. He also gives a concise but thorough treatment of analytic continuation and functional equation. Graduate students wishing to know more about L-functions will find this a unique introduction to this fascinating branch of mathematics.

PI and the AGM - A Study in Analytic Number Theory  and Computational Complexity (Paperback, Revised): J.M. Borwein PI and the AGM - A Study in Analytic Number Theory and Computational Complexity (Paperback, Revised)
J.M. Borwein
R4,646 Discovery Miles 46 460 Ships in 12 - 19 working days

Critical Acclaim for Pi and the AGM:

"Fortunately we have the Borwein's beautiful book . . . explores in the first five chapters the glorious world so dear to Ramanujan . . . would be a marvelous text book for a graduate course."--Bulletin of the American Mathematical Society

"What am I to say about this quilt of a book? One is reminded of Debussy who, on being asked by his harmony teacher to explain what rules he was following as he improvised at the piano, replied, "Mon plaisir." The authors are cultured mathematicians. They have selected what has amused and intrigued them in the hope that it will do the same for us. Frankly, I cannot think of a more provocative and generous recipe for writing a book . . . (it) is cleanly, even beautifully written, and attractively printed and composed. The book is unique. I cannot think of any other book in print which contains more than a smidgen of the material these authors have included.--SIAM Review

"If this subject begins to sound more interesting than it did in the last newspaper article on 130 million digits of Pi, I have partly succeeded. To succeed completely I will have gotten you interested enough to read the delightful and important book by the Borweins."--American Mathematical Monthly

"The authors are to be commended for their careful presentation of much of the content of Ramanujan's famous paper, 'Modular Equations and Approximations to Pi'. This material has not heretofore appeared in book form. However, more importantly, Ramanujan provided no proofs for many of the claims that he made, and so the authors provided many of the missing details . . . The Borweins, indeed have helped us find the right roads."--Mathematics ofComputation

Selberg Zeta Functions and Transfer Operators - An Experimental Approach to Singular Perturbations (Paperback, 1st ed. 2017):... Selberg Zeta Functions and Transfer Operators - An Experimental Approach to Singular Perturbations (Paperback, 1st ed. 2017)
Markus Szymon Fraczek
R2,906 Discovery Miles 29 060 Ships in 10 - 15 working days

This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces.

Class Field Theory and L Functions - Foundations and Main Results (Hardcover): Franz Halter-Koch Class Field Theory and L Functions - Foundations and Main Results (Hardcover)
Franz Halter-Koch
R4,423 R3,629 Discovery Miles 36 290 Save R794 (18%) Ships in 12 - 19 working days

A Thorough Presentation of the Theory of Algebraic Numbers and Functions Built on a presentation of algebraic foundations Topics in (algebraic) number theory are presented in a systematic, unified and often in a original manner. Many of the topics covered are not contained in books or in accessible surveys.

The Discrepancy Method - Randomness and Complexity (Hardcover): Bernard Chazelle The Discrepancy Method - Randomness and Complexity (Hardcover)
Bernard Chazelle
R3,799 Discovery Miles 37 990 Ships in 12 - 19 working days

The discrepancy method has produced the most fruitful line of attack on a pivotal computer science question: What is the computational power of random bits? It has also played a major role in recent developments in complexity theory. This book tells the story of the discrepancy method in a few succinct independent vignettes. The chapters explore such topics as communication complexity, pseudo-randomness, rapidly mixing Markov chains, points on a sphere, derandomization, convex hulls and Voronoi diagrams, linear programming, geometric sampling and VC-dimension theory, minimum spanning trees, circuit complexity, and multidimensional searching. The mathematical treatment is thorough and self-contained, with minimal prerequisites. More information can be found on the book's home page at http://www.cs.princeton.edu/~chazelle/book.html.

Nonstandard Analysis for the Working Mathematician (Paperback, Softcover reprint of the original 2nd ed. 2015): Peter A. Loeb,... Nonstandard Analysis for the Working Mathematician (Paperback, Softcover reprint of the original 2nd ed. 2015)
Peter A. Loeb, Manfred P.H. Wolff
R4,257 Discovery Miles 42 570 Ships in 10 - 15 working days

Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a 'secret weapon' by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler's internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.

Hex - The Full Story (Hardcover): Ryan B. Hayward, Bjarne Toft Hex - The Full Story (Hardcover)
Ryan B. Hayward, Bjarne Toft
R5,393 Discovery Miles 53 930 Ships in 12 - 19 working days

Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside... Features New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history

Quadratic Diophantine Equations (Paperback, Softcover reprint of the original 1st ed. 2015): Titu Andreescu, Dorin Andrica Quadratic Diophantine Equations (Paperback, Softcover reprint of the original 1st ed. 2015)
Titu Andreescu, Dorin Andrica
R2,136 Discovery Miles 21 360 Ships in 10 - 15 working days

This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell's equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.

An Irregular Mind - Szemeredi is 70 (Paperback, Softcover reprint of the original 1st ed. 2010): Imre Barany, Jozsef Solymosi An Irregular Mind - Szemeredi is 70 (Paperback, Softcover reprint of the original 1st ed. 2010)
Imre Barany, Jozsef Solymosi
R4,510 Discovery Miles 45 100 Ships in 10 - 15 working days

Szemeredi's influence on today's mathematics, especially in combinatorics, additive number theory, and theoretical computer science, is enormous. This volume is a celebration of Szemeredi's achievements and personality, on the occasion of his seventieth birthday. It exemplifies his extraordinary vision and unique way of thinking. A number of colleagues and friends, all top authorities in their fields, have contributed their latest research papers to this volume. The topics include extension and applications of the regularity lemma, the existence of k-term arithmetic progressions in various subsets of the integers, extremal problems in hypergraphs theory, and random graphs, all of them beautiful, Szemeredi type mathematics. It also contains published accounts of the first two, very original and highly successful Polymath projects, one led by Tim Gowers and the other by Terry Tao.

Quadratic Residues and Non-Residues - Selected Topics (Paperback, 1st ed. 2016): Steve Wright Quadratic Residues and Non-Residues - Selected Topics (Paperback, 1st ed. 2016)
Steve Wright
R2,477 Discovery Miles 24 770 Ships in 10 - 15 working days

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet's Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

Automorphic Forms - Research in Number Theory from Oman (Paperback, Softcover reprint of the original 1st ed. 2014): Bernhard... Automorphic Forms - Research in Number Theory from Oman (Paperback, Softcover reprint of the original 1st ed. 2014)
Bernhard Heim, Mehiddin Al-Baali, Tomoyoshi Ibukiyama, Florian Rupp
R3,556 Discovery Miles 35 560 Ships in 10 - 15 working days

This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 "International Conference on Automorphic Forms and Number Theory," held in Muscat, Sultanate of Oman. The present volume includes original research as well as some surveys and outlines of research altogether providing a contemporary snapshot on the latest activities in the field and covering the topics of: Borcherds products Congruences and Codes Jacobi forms Siegel and Hermitian modular forms Special values of L-series Recently, the Sultanate of Oman became a member of the International Mathematical Society. In view of this development, the conference provided the platform for scientific exchange and collaboration between scientists of different countries from all over the world. In particular, an opportunity was established for a close exchange between scientists and students of Germany, Oman, and Japan. The conference was hosted by the Sultan Qaboos University and the German University of Technology in Oman.

Applied Number Theory (Paperback, Softcover reprint of the original 1st ed. 2015): Harald Niederreiter, Arne Winterhof Applied Number Theory (Paperback, Softcover reprint of the original 1st ed. 2015)
Harald Niederreiter, Arne Winterhof
R2,890 Discovery Miles 28 900 Ships in 10 - 15 working days

This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars' GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.

Hidden Harmony-Geometric Fantasies - The Rise of Complex Function Theory (Paperback, Softcover reprint of the original 1st ed.... Hidden Harmony-Geometric Fantasies - The Rise of Complex Function Theory (Paperback, Softcover reprint of the original 1st ed. 2013)
Umberto Bottazzini, Jeremy Gray
R6,570 Discovery Miles 65 700 Ships in 10 - 15 working days

This book is a history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpublished sources. In addition to an extensive and detailed coverage of the three founders of the subject - Cauchy, Riemann, and Weierstrass - it looks at the contributions of authors from d'Alembert to Hilbert, and Laplace to Weyl. Particular chapters examine the rise and importance of elliptic function theory, differential equations in the complex domain, geometric function theory, and the early years of complex function theory in several variables. Unique emphasis has been devoted to the creation of a textbook tradition in complex analysis by considering some seventy textbooks in nine different languages. The book is not a mere sequence of disembodied results and theories, but offers a comprehensive picture of the broad cultural and social context in which the main actors lived and worked by paying attention to the rise of mathematical schools and of contrasting national traditions. The book is unrivaled for its breadth and depth, both in the core theory and its implications for other fields of mathematics. It documents the motivations for the early ideas and their gradual refinement into a rigorous theory.

Combinatorial and Additive Number Theory - CANT 2011 and 2012 (Paperback, Softcover reprint of the original 1st ed. 2014):... Combinatorial and Additive Number Theory - CANT 2011 and 2012 (Paperback, Softcover reprint of the original 1st ed. 2014)
Melvyn B Nathanson
R7,181 Discovery Miles 71 810 Ships in 10 - 15 working days

This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.

Advances in the Theory of Numbers - Proceedings of the Thirteenth Conference of the Canadian Number Theory Association... Advances in the Theory of Numbers - Proceedings of the Thirteenth Conference of the Canadian Number Theory Association (Paperback, Softcover reprint of the original 1st ed. 2015)
Ayse Alaca, Saban Alaca, Kenneth S. Williams
R3,556 Discovery Miles 35 560 Ships in 10 - 15 working days

The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat's last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.

Computational and Analytical Mathematics - In Honor of Jonathan Borwein's 60th Birthday (Paperback, Softcover reprint of... Computational and Analytical Mathematics - In Honor of Jonathan Borwein's 60th Birthday (Paperback, Softcover reprint of the original 1st ed. 2013)
David H. Bailey, Heinz H. Bauschke, Peter Borwein, Frank Garvan, Michel Thera, …
R4,545 Discovery Miles 45 450 Ships in 10 - 15 working days

The research of Jonathan Borwein has had a profound impact on optimization, functional analysis, operations research, mathematical programming, number theory, and experimental mathematics. Having authored more than a dozen books and more than 300 publications, Jonathan Borwein is one of the most productive Canadian mathematicians ever. His research spans pure, applied, and computational mathematics as well as high performance computing, and continues to have an enormous impact: MathSciNet lists more than 2500 citations by more than 1250 authors, and Borwein is one of the 250 most cited mathematicians of the period 1980-1999. He has served the Canadian Mathematics Community through his presidency (2000-02) as well as his 15 years of editing the CMS book series. Jonathan Borwein's vision and initiative have been crucial in initiating and developing several institutions that provide support for researchers with a wide range of scientific interests. A few notable examples include the Centre for Experimental and Constructive Mathematics and the IRMACS Centre at Simon Fraser University, the Dalhousie Distributed Research Institute at Dalhousie University, the Western Canada Research Grid, and the Centre for Computer Assisted Research Mathematics and its Applications, University of Newcastle. The workshops that were held over the years in Dr. Borwein's honor attracted high-caliber scientists from a wide range of mathematical fields. This present volume is an outgrowth of the workshop on 'Computational and Analytical Mathematics' held in May 2011 in celebration of Dr. Borwein's 60th Birthday. The collection contains various state-of-the-art research manuscripts and surveys presenting contributions that have risen from the conference, and is an excellent opportunity to survey state-of-the-art research and discuss promising research directions and approaches.

Structural Additive Theory (Paperback, Softcover reprint of the original 1st ed. 2013): David J. Grynkiewicz Structural Additive Theory (Paperback, Softcover reprint of the original 1st ed. 2013)
David J. Grynkiewicz
R4,889 Discovery Miles 48 890 Ships in 10 - 15 working days

Nestled between number theory, combinatorics, algebra and analysis lies a rapidly developing subject in mathematics variously known as additive combinatorics, additive number theory, additive group theory, and combinatorial number theory. Its main objects of study are not abelian groups themselves, but rather the additive structure of subsets and subsequences of an abelian group, i.e., sumsets and subsequence sums. This text is a hybrid of a research monograph and an introductory graduate textbook. With few exceptions, all results presented are self-contained, written in great detail, and only reliant upon material covered in an advanced undergraduate curriculum supplemented with some additional Algebra, rendering this book usable as an entry-level text. However, it will perhaps be of even more interest to researchers already in the field. The majority of material is not found in book form and includes many new results as well. Even classical results, when included, are given in greater generality or using new proof variations. The text has a particular focus on results of a more exact and precise nature, results with strong hypotheses and yet stronger conclusions, and on fundamental aspects of the theory. Also included are intricate results often neglected in other texts owing to their complexity. Highlights include an extensive treatment of Freiman Homomorphisms and the Universal Ambient Group of sumsets A+B, an entire chapter devoted to Hamidoune's Isoperimetric Method, a novel generalization allowing infinite summands in finite sumset questions, weighted zero-sum problems treated in the general context of viewing homomorphisms as weights, and simplified proofs of the Kemperman Structure Theorem and the Partition Theorem for setpartitions.

Iwasawa Theory 2012 - State of the Art and Recent Advances (Paperback, Softcover reprint of the original 1st ed. 2014):... Iwasawa Theory 2012 - State of the Art and Recent Advances (Paperback, Softcover reprint of the original 1st ed. 2014)
Thanasis Bouganis, Otmar Venjakob
R4,245 Discovery Miles 42 450 Ships in 10 - 15 working days

This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida's theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan).

The Whole Truth About Whole Numbers - An Elementary Introduction to Number Theory (Paperback, Softcover reprint of the original... The Whole Truth About Whole Numbers - An Elementary Introduction to Number Theory (Paperback, Softcover reprint of the original 1st ed. 2015)
Sylvia Forman, Agnes M Rash
R2,465 Discovery Miles 24 650 Ships in 10 - 15 working days

The Whole Truth About Whole Numbers is an introduction to the field of Number Theory for students in non-math and non-science majors who have studied at least two years of high school algebra. Rather than giving brief introductions to a wide variety of topics, this book provides an in-depth introduction to the field of Number Theory. The topics covered are many of those included in an introductory Number Theory course for mathematics majors, but the presentation is carefully tailored to meet the needs of elementary education, liberal arts, and other non-mathematical majors. The text covers logic and proofs, as well as major concepts in Number Theory, and contains an abundance of worked examples and exercises to both clearly illustrate concepts and evaluate the students' mastery of the material.

Pell and Pell-Lucas Numbers with Applications (Paperback, Softcover reprint of the original 1st ed. 2014): Thomas Koshy Pell and Pell-Lucas Numbers with Applications (Paperback, Softcover reprint of the original 1st ed. 2014)
Thomas Koshy
R1,989 Discovery Miles 19 890 Ships in 10 - 15 working days

Pell and Pell-Lucas numbers, like the well-known Fibonacci and Catalan numbers, continue to intrigue the mathematical world with their beauty and applicability. They offer opportunities for experimentation, exploration, conjecture, and problem-solving techniques, connecting the fields of analysis, geometry, trigonometry, and various areas of discrete mathematics, number theory, graph theory, linear algebra, and combinatorics. Pell and Pell-Lucas numbers belong to an extended Fibonacci family as a powerful tool for extracting numerous interesting properties of a vast array of number sequences. A key feature of this work is the historical flavor that is interwoven into the extensive and in-depth coverage of the subject. An interesting array of applications to combinatorics, graph theory, geometry, and intriguing mathematical puzzles is another highlight engaging the reader. The exposition is user-friendly, yet rigorous, so that a broad audience consisting of students, math teachers and instructors, computer scientists and other professionals, along with the mathematically curious will all benefit from this book. Finally, Pell and Pell-Lucas Numbers provides enjoyment and excitement while sharpening the reader's mathematical skills involving pattern recognition, proof-and-problem-solving techniques.

Number Story - From Counting to Cryptography (Paperback, Softcover reprint of the original 1st ed. 2008): Peter Michael Higgins Number Story - From Counting to Cryptography (Paperback, Softcover reprint of the original 1st ed. 2008)
Peter Michael Higgins
R636 R579 Discovery Miles 5 790 Save R57 (9%) Ships in 10 - 15 working days

Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems. This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas. As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers.

Introduction to Mathematical Structures and Proofs (Paperback, Softcover reprint of the original 2nd ed. 2012): Larry J.... Introduction to Mathematical Structures and Proofs (Paperback, Softcover reprint of the original 2nd ed. 2012)
Larry J. Gerstein
R1,587 Discovery Miles 15 870 Ships in 10 - 15 working days

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor-and the flexible thinking-required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Microbiome Therapeutics - Personalized…
Nar Singh Chauhan, Suneel Kumar Paperback R3,438 Discovery Miles 34 380
The Senses: A Comprehensive Reference
Bernd Fritzsch Hardcover R93,914 Discovery Miles 939 140
Imaging in Movement Disorders: Imaging…
Marios Politis Hardcover R4,804 Discovery Miles 48 040
Encyclopedia of Child and Adolescent…
Bonnie Halpern-Felsher Hardcover R64,290 Discovery Miles 642 900
Designing Soybeans for 21st Century…
Richard L. Wilson Hardcover R3,534 Discovery Miles 35 340
Colorectal Neoplasia and the Colorectal…
Martin H. Floch Paperback R3,644 Discovery Miles 36 440
Introduction to Basic Aspects of the…
Otto Appenzeller, Guillaume J. Lamotte, … Hardcover R3,701 Discovery Miles 37 010
Integrative Problem-Solving in a Time of…
George Christakos Hardcover R4,475 Discovery Miles 44 750
Cave Of Bones - A True Story Of…
Lee Berger Paperback  (1)
R420 R375 Discovery Miles 3 750
Handbook of Gastrointestinal Motility…
Satish S.C. Rao, Henry Parkman, … Paperback R3,650 Discovery Miles 36 500

 

Partners