![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory
Moduli theory is the study of how objects, typically in algebraic geometry but sometimes in other areas of mathematics, vary in families and is fundamental to an understanding of the objects themselves. First formalised in the 1960s, it represents a significant topic of modern mathematical research with strong connections to many areas of mathematics (including geometry, topology and number theory) and other disciplines such as theoretical physics. This book, which arose from a programme at the Isaac Newton Institute in Cambridge, is an ideal way for graduate students and more experienced researchers to become acquainted with the wealth of ideas and problems in moduli theory and related areas. The reader will find articles on both fundamental material and cutting-edge research topics, such as: algebraic stacks; BPS states and the P = W conjecture; stability conditions; derived differential geometry; and counting curves in algebraic varieties, all written by leading experts.
"Number Theory and Related Fields" collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.
This collection of survey and research articles focuses on recent developments concerning various quantitative aspects of 'thin groups'. There are discrete subgroups of semisimple Lie groups that are both big (i.e., Zariski dense) and small (i.e., of infinite co-volume). This dual nature leads to many intricate questions. Over the past few years, many new ideas and techniques, arising in particular from arithmetic combinatorics, have been involved in the study of such groups, leading, for instance, to far-reaching generalizations of the strong approximation theorem in which congruence quotients are shown to exhibit a spectral gap, referred to as superstrong approximation. This book provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics. It is suitable for professional mathematicians and graduate students in mathematics interested in this fascinating area of research.
This book provides a lucid exposition of the connections between non-commutative geometry and the famous Riemann Hypothesis, focusing on the theory of one-dimensional varieties over a finite field. The reader will encounter many important aspects of the theory, such as Bombieri's proof of the Riemann Hypothesis for function fields, along with an explanation of the connections with Nevanlinna theory and non-commutative geometry. The connection with non-commutative geometry is given special attention, with a complete determination of the Weil terms in the explicit formula for the point counting function as a trace of a shift operator on the additive space, and a discussion of how to obtain the explicit formula from the action of the idele class group on the space of adele classes. The exposition is accessible at the graduate level and above, and provides a wealth of motivation for further research in this area.
This book provides a lucid exposition of the connections between non-commutative geometry and the famous Riemann Hypothesis, focusing on the theory of one-dimensional varieties over a finite field. The reader will encounter many important aspects of the theory, such as Bombieri's proof of the Riemann Hypothesis for function fields, along with an explanation of the connections with Nevanlinna theory and non-commutative geometry. The connection with non-commutative geometry is given special attention, with a complete determination of the Weil terms in the explicit formula for the point counting function as a trace of a shift operator on the additive space, and a discussion of how to obtain the explicit formula from the action of the idele class group on the space of adele classes. The exposition is accessible at the graduate level and above, and provides a wealth of motivation for further research in this area.
By connecting dynamical systems and number theory, this graduate textbook on ergodic theory acts as an introduction to a highly active area of mathematics, where a variety of strands of research open up. The text explores various concepts in infinite ergodic theory, always using continued fractions and other number-theoretic dynamical systems as illustrative examples. Contents: Preface Mathematical symbols Number-theoretical dynamical systems Basic ergodic theory Renewal theory and -sum-level sets Infinite ergodic theory Applications of infinite ergodic theory Bibliography Index
A Thorough Presentation of the Theory of Algebraic Numbers and Functions Built on a presentation of algebraic foundations Topics in (algebraic) number theory are presented in a systematic, unified and often in a original manner. Many of the topics covered are not contained in books or in accessible surveys.
Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory. The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Goetze, a noted expert in this field.
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.
A Fibonacci-Based Pseudo-Random Number Generator.- On the Proof of GCD and LCM Equalities Concerning the Generalized Binomial and Multinomial Coefficients.- Supercube.- A Note on Fundamental Properties of Recurring Series.- Period Patterns of Certain Second-Order Linear Recurrences Modulo A Prime.- Nearly Isosceles Triangles Where the Vertex Angle Is a Multiple of the Base Angle.- The Ring of Fibonacci (Fibonacci "Numbers" With Matrix Subscript).- One-Relator Products of Cyclic Groups and Fibonacci-Like Sequences.- A Generalization of the Fibonacci Search.- Pascal's Triangle: Top Gun or Just One of the Gang?.- Conversion of Fibonacci Identities into Hyperbolic Identities Valid for an Arbitrary Argument.- Derivative Sequences of Fibonacci and Lucas Polynomials.- A Carry Theorem for Rational Binomial Coefficients.- On Co-Related Sequences Involving Generalized Fibonacci Numbers.- Fibonacci and B-Adic Trees in Mosaic Graphs.- Fibonacci Representations of Graphs.- On the Sizes of Elements in the Complement of a Submonoid of Integers.- Genocchi Polynomials.- An Application of Zeckendorf's Theorem.- A New Kind of Golden Triangle.- Terms Common to Two Sequences Satisfying the Same Linear Recurrence.- Recurrence Relations in Exponential Functions and in Damped Sinusoids and Their Applications in Electronics.- Some Basic Properties of the Fibonacci Line-Sequence.- De Moivre-Type Identities for the Tetrabonacci Numbers.- Two Generalizations of Gould's Star of David Theorem.- On Triangular Lucas Numbers.- A Fast Algorithm of the Chinese Remainder Theorem and Its Application to Fibonacci Numbers.- Generating the Pythagorean Triples Via Simple Continued Fractions.- On the Moebius Knot Tree and Euclid's Algorithm.- Generalized Fibonacci and Lucas Factorizations.- On Even Fibonacci Pseudoprimes.- Possible Restricted Periods of Certain Lucas Sequences Modulo P.- Using Matrix Techniques to Establish Properties of a Generalized Tribonacci Sequence.
Peter Gustav Lejeune Dirichlet (1805-59) may be considered the father of modern number theory. He studied in Paris, coming under the influence of mathematicians like Fourier and Legendre, and then taught at Berlin and Goettingen universities, where he was the successor to Gauss. This book contains lectures on number theory given by Dirichlet in 1856-7. They include his famous proofs of the class number theorem for binary quadratic forms and the existence of an infinity of primes in every appropriate arithmetical progression. The material was first published in 1863 by Richard Dedekind (1831-1916), professor at Braunschweig, who had been a junior colleague of Dirichlet at Goettingen. The second edition appeared in 1871; this reissue is of the third, revised and expanded, edition of 1879; a fourth edition appeared as late as 1894. The appendices contain further work by both Dirichlet and Dedekind.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL... In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time... this publication...will no doubt stimulate generations of scholars to come." Volume IV collects Siegels papers from 1968 to 1975.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL, who is rising seventy. In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time...this publication...will no doubt stimulate generations of scholars to come." Volume II includes Siegel's papers written between 1937 and 1944.
From the Preface by K. Chandrasekharan: "The publication of this collection of papers is intended as a service to the mathematical community, as well as a tribute to the genius of CARL LUDWIG SIEGEL. In the wide range of his interests, in his capacity to uncover, to attack, and to subdue problems of great significance and difficulty, in his invention of new concepts and ideas, in his technical prowess, and in the consummate artistry of his presentation, SIEGEL resembles the classical figures of mathematics. In his combination of arithmetical, analytical, algebraical, and geometrical methods of investigation, and in his unerring instinct for the conceptual and structural, as distinct from the merely technical, aspects of any concrete problem, he represents the best type of modern mathematical thought. At once classical and modern, his work has profoundly influenced the mathematical culture of our time...this publication...will no doubt stimulate generations of scholars to come." Volume III collects Siegel's papers from 1945 to 1964.
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author's 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforward applications of the theory to problems that are devised to challenge the reader. Questions for further study are provided after selected exercises. Most proofs are given in detail, though a few proofs are omitted since they are beyond the scope of this book.
Joseph Liouville is recognised as one of the great mathematicians of the nineteenth century, and one of his greatest achievements was the introduction of a powerful new method into elementary number theory. This book provides a gentle introduction to this method, explaining it in a clear and straightforward manner. The many applications provided include applications to sums of squares, sums of triangular numbers, recurrence relations for divisor functions, convolution sums involving the divisor functions, and many others. All of the topics discussed have a rich history dating back to Euler, Jacobi, Dirichlet, Ramanujan and others, and they continue to be the subject of current mathematical research. Williams places the results in their historical and contemporary contexts, making the connection between Liouville's ideas and modern theory. This is the only book in English entirely devoted to the subject and is thus an extremely valuable resource for both students and researchers alike.
This volume contains almost all mathematical papers published between 1943 and 1984 of Igor R. Shafarevich. They appear in English translations (with two exceptions, which are in French and German), some of the papers have been translated into English especially for this edition. Notes by Shafarevich at the end of the volume contain corrections and remarks on the subsequent development of the subjects considered in the papers. Igor R. Shafarevich has made a big impact on mathematics. He has worked in the fields of algebra, algebraic number theory, algebraic geometry and arithmetic algebraic geometry. His papers reflect his broad interests and include topics such as the proof of the general reciprocity law, the realization of groups as Galois groups of number fields, class field towers, algebraic surfaces (in particular K3 surfaces), elliptic curves, and finiteness results on abelian varieties, algebraic curves over number fields and lie algebras.
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including -invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
From July 25-August 6, 1966 a Summer School on Local Fields was held in Driebergen (the Netherlands), organized by the Netherlands Universities Foundation for International Cooperation (NUFFIC) with financial support from NATO. The scientific organizing Committl!e consisted ofF. VANDER BLIJ, A. H. M. LEVELT, A. F. MaNNA, J. P. MuRRE and T. A. SPRINGER. The Summer School was attended by approximately 80 mathematicians from various countries. The contributions collected in the present book are all based on the talks given at the Summer School. It is hoped that the book will serve the same purpose as the Summer School: to provide an introduction to current research in Local Fields and related topics. July 1967 T. A. SPRINGER Contents ARnN, M. and B. MAZUR: Homotopy of Varieties in the Etale Topology 1 BAss, H: The Congruence Subgroup Problem 16 BRUHAT, F. et J. TITs: Groupes algebriques simples sur un corps local . 23 CASSELS, J. W. S. : Elliptic Curves over Local Fields 37 DwoRK, B. : On the Rationality of Zeta Functions and L-Series 40 MaNNA, A. F. : Linear Topological Spaces over Non-Archimedean Valued Fields . 56 NERON, A. : Modeles minimaux des espaces principaux homo genes sur les courbes elliptiques 66 RAYNAUD, M. : Passage au quotient par une relation d'equivalence plate . 78 REMMERT, R. : Algebraische Aspekte in der nichtarchimedischen Analysis . 86 SERRE, J. -P. : Sur les groupes de Galois attaches aux groupes p-divisibles . 118 SWINNERTON-DYER, P. : The Conjectures of Birch and Swinnerton- Dyer, and of Tate . 132 TATE, J. T.
This is a reissue of a classic text previously published by the LMS, aimed at beginning postgraduate students in algebra and number theory. It gives a well-paced introduction to topics central to several active areas of mathematical research, and provides a very helpful background reference to researchers.
Hardy's Z-function, related to the Riemann zeta-function (s), was originally utilised by G. H. Hardy to show that (s) has infinitely many zeros of the form 1/2+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line 1/2+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of (s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy-Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.
In recent years, research in K3 surfaces and Calabi-Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics-in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi-Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi-Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.
After Pyatetski-Shapiro [PSI] and Satake [Sal] introduced, independent of one another, an early form of the Jacobi Theory in 1969 (while not naming it as such), this theory was given a definite push by the book The Theory of Jacobi Forms by Eichler and Zagier in 1985. Now, there are some overview articles describing the developments in the theory of the Jacobi group and its automor- phic forms, for instance by Skoruppa [Sk2], Berndt [Be5] and Kohnen [Ko]. We refer to these for more historical details and many more names of authors active in this theory, which stretches now from number theory and algebraic geometry to theoretical physics. But let us only briefly indicate several - sometimes very closely related - topics touched by Jacobi theory as we see it: * fields of meromorphic and rational functions on the universal elliptic curve resp. universal abelian variety * structure and projective embeddings of certain algebraic varieties and homogeneous spaces * correspondences between different kinds of modular forms * L-functions associated to different kinds of modular forms and autom- phic representations * induced representations * invariant differential operators * structure of Hecke algebras * determination of generalized Kac-Moody algebras and as a final goal related to the here first mentioned * mixed Shimura varieties and mixed motives. |
You may like...
Mathematics for Young Learners - A Guide…
Rosalind Charlesworth, Karen Lind, …
Paperback
Theories of Early Childhood Education…
Lynne Cohen, Sandra Waite-Stupiansky
Hardcover
R4,077
Discovery Miles 40 770
Advance Trends in Soft Computing…
Mo Jamshidi, Vladik Kreinovich, …
Hardcover
R6,499
Discovery Miles 64 990
Innovation Fundamentals - Quantitative…
Adedeji B. Badiru, Gary Lamont
Hardcover
R4,504
Discovery Miles 45 040
|