0
Your cart

Your cart is empty

Books > Science & Mathematics > Mathematics > Mathematical foundations

Buy Now

Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations (Paperback, Softcover reprint of the original 2nd ed. 2016) Loot Price: R3,104
Discovery Miles 31 040
Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations (Paperback,...

Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations (Paperback, Softcover reprint of the original 2nd ed. 2016)

Audrey Terras

 (sign in to rate)
Loot Price R3,104 Discovery Miles 31 040 | Repayment Terms: R291 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincare Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant +/-1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

General

Imprint: Springer-Verlag New York
Country of origin: United States
Release date: April 2018
First published: 2016
Authors: Audrey Terras
Dimensions: 235 x 155 x 26mm (L x W x T)
Format: Paperback
Pages: 487
Edition: Softcover reprint of the original 2nd ed. 2016
ISBN-13: 978-1-4939-8042-0
Categories: Books > Science & Mathematics > Mathematics > Probability & statistics
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
Books > Health, Home & Family > Gardening > General
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Books > Science & Mathematics > Mathematics > Geometry > General
Books > Science & Mathematics > Mathematics > Number theory > General
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Books > Gardening > General
LSN: 1-4939-8042-4
Barcode: 9781493980420

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners