![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
CALCULUS: EARLY TRANSCENDENTALS, Metric, 9th Edition provides you with the strongest foundation for a STEM future. James Stewart's Calculus, Metric series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, coauthors Daniel Clegg and Saleem Watson continue his legacy, and their careful refinements retain Stewart's clarity of exposition and make the 9th Edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
A Generalized Framework of Linear Multivariable Control proposes a number of generalized models by using the generalized inverse of matrix, while the usual linear multivariable control theory relies on some regular models. The book supports that in H-infinity control, the linear fractional transformation formulation is relying on the inverse of the block matrix. If the block matrix is not regular, the H-infinity control does not apply any more in the normal framework. Therefore, it is very important to relax those restrictions to generalize the classical notions and models to include some non-regular cases. This book is ideal for scholars, academics, professional engineer and students who are interested in control system theory.
Vectors in 2 or 3 Dimensions provides an introduction to vectors
from their very basics. The author has approached the subject from
a geometrical standpoint and although applications to mechanics
will be pointed out and techniques from linear algebra employed, it
is the geometric view which is emphasised throughout.
For one- or two-semester junior or senior level courses in Advanced Calculus, Analysis I, or Real Analysis. This text prepares students for future courses that use analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. This book is designed to challenge advanced students while encouraging and helping weaker students. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing students the motivation behind the mathematics and enabling them to construct their own proofs.
MULTIVARIABLE CALCULUS, Metric, 9th Edition, provides you with the strongest foundation for a STEM future. James Stewart's Calculus, Metric series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy and their careful refinements retain Stewart's clarity of exposition and make the 9th edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.
This book contains the latest developments of the theory of discontinuous groups acting on homogenous spaces, from basic concepts to a comprehensive exposition. It develops the newest approaches and methods in the deformation theory of topological modules and unitary representations and focuses on the geometry of discontinuous groups of solvable Lie groups and their compact extensions. It also presents proofs of recent results, computes fundamental examples, and serves as an introduction and reference for students and experienced researchers in Lie theory, discontinuous groups, and deformation (and moduli) spaces.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
Study smarter and stay on top of your calculus course with the bestselling Schaum's Outline-now with the NEW Schaum's app and website! Schaum's Outline of Calculus, Seventh Edition is the go-to study guide for hundreds of thousands of high school and college students enrolled in calculus courses-including Calculus, Calculus II, Calculus III, AP Calculus and Precalculus. With an outline format that facilitates quick and easy review, Schaum's Outline of Calculus, Seventh Edition helps you understand basic concepts and get the extra practice you need to excel in these courses. Chapters include Linear Coordinate Systems, Functions, Limits, Rules for Differentiating Functions, Law of the Mean, Inverse Trigonometric Functions, The Definite Integral, Space Vectors, Directional Derivatives, and much, much more. Features: NEW to this edition: the new Schaum's app and website! 1,105 problems solved step by step 30 problem-solving videos online Outline format supplies a concise guide to the standard college course in calculus Clear, concise explanations covers all course fundamentals Hundreds of additional practice problems Supports the major leading textbooks in calculus Appropriate for the following courses: Calculus I, Calculus II, Calculus III, AP Calculus, Precalculus
Theoretical advances and new foundations have been reported at the Conference for more than 40 years which has helped expand the range of applications as well as the type of materials in response to industrial and professional requirements. Since the conference started it has attracted high quality papers that report further advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences, for instance. As design, analysis and manufacture become more integrated, the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications, which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. The included papers originate from the 46th conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM) which acts as a forum to discuss new ideas and critically compare results before the solution and tools are released to the end users.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
This book is a general introduction to the statistical analysis of networks, and can serve both as a research monograph and as a textbook. Numerous fundamental tools and concepts needed for the analysis of networks are presented, such as network modeling, community detection, graph-based semi-supervised learning and sampling in networks. The description of these concepts is self-contained, with both theoretical justifications and applications provided for the presented algorithms.Researchers, including postgraduate students, working in the area of network science, complex network analysis, or social network analysis, will find up-to-date statistical methods relevant to their research tasks. This book can also serve as textbook material for courses related to thestatistical approach to the analysis of complex networks.In general, the chapters are fairly independent and self-supporting, and the book could be used for course composition "a la carte". Nevertheless, Chapter 2 is needed to a certain degree for all parts of the book. It is also recommended to read Chapter 4 before reading Chapters 5 and 6, but this is not absolutely necessary. Reading Chapter 3 can also be helpful before reading Chapters 5 and 7. As prerequisites for reading this book, a basic knowledge in probability, linear algebra and elementary notions of graph theory is advised. Appendices describing required notions from the above mentioned disciplines have been added to help readers gain further understanding.
SINGLE VARIABLE CALCULUS, Metric, 9th Edition, provides you with the strongest foundation for a STEM future. James Stewart's Calculus series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy and their careful refinements retain Stewart's clarity of exposition and make the 9th edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
The scientific field of data analysis is constantly expanding due to the rapid growth of the computer industry and the wide applicability of computational and algorithmic techniques, in conjunction with new advances in statistical, stochastic and analytic tools. There is a constant need for new, high-quality publications to cover the recent advances in all fields of science and engineering. This book is a collective work by a number of leading scientists, computer experts, analysts, engineers, mathematicians, probabilists and statisticians who have been working at the forefront of data analysis and related applications. The chapters of this collaborative work represent a cross-section of current concerns, developments and research interests in the above scientific areas. The collected material has been divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with related applications.
Mathematical Methods of Analytical Mechanics uses tensor geometry and geometry of variation calculation, includes the properties associated with Noether's theorem, and highlights methods of integration, including Jacobi's method, which is deduced. In addition, the book covers the Maupertuis principle that looks at the conservation of energy of material systems and how it leads to quantum mechanics. Finally, the book deduces the various spaces underlying the analytical mechanics which lead to the Poisson algebra and the symplectic geometry.
This book provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. Necessary prerequisites to using the text are rudiments of the Lebesgue measure and integration on the real line. It begins with a thorough treatment of Fourier series on the circle and their applications to approximation theory, probability, and plane geometry (the isoperimetric theorem). Frequently, more than one proof is offered for a given theorem to illustrate the multiplicity of approaches. The second chapter treats the Fourier transform on Euclidean spaces, especially the author's results in the three-dimensional piecewise smooth case, which is distinct from the classical Gibbs - Wilbraham phenomenon of one-dimensional Fourier analysis. The Poisson summation formula treated in Chapter 3 provides an elegant connection between Fourier series on the circle and Fourier transforms on the real line, culminating in Landau's asymptotic formulas for lattice points on a large sphere. Much of modern harmonic analysis is concerned with the behavior of various linear operators on the Lebesgue spaces Lp (Rn). Chapter 4 gives a gentle introduction to these results, using the Riesz - Thorin theorem and the Marcinkiewicz interpolation formula. One of the long-time users of Fourier analysis is probability theory. In Chapter 5 the central limit theorem, iterated log theorem, and Berry - Esseen theorems are developed using the suitable Fourier-analytic tools. The final chapter furnishes a gentle introduction to wavelet theory, depending only on the L2 theory of the Fourier transform (the Plancherel theorem). The basic notions of scale and location parameters demonstrate the flexibility of the wavelet approach to harmonic analysis. The text contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.
For a two-semester or three-semester course in Calculus for Life Sciences. Calculus for Biology and Medicine, Third Edition, addresses the needs of students in the biological sciences by showing them how to use calculus to analyze natural phenomena-without compromising the rigorous presentation of the mathematics. While the table of contents aligns well with a traditional calculus text, all the concepts are presented through biological and medical applications. The text provides students with the knowledge and skills necessary to analyze and interpret mathematical models of a diverse array of phenomena in the living world. Since this text is written for college freshmen, the examples were chosen so that no formal training in biology is needed.
Measure Theory and Fine Properties of Functions, Revised Edition provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions. Topics covered include a quick review of abstract measure theory, theorems and differentiation in n, Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions as well as functions of bounded variation. The text provides complete proofs of many key results omitted from other books, including Besicovitch's covering theorem, Rademacher's theorem (on the differentiability a.e. of Lipschitz functions), area and coarea formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Aleksandrov's theorem (on the twice differentiability a.e. of convex functions). This revised edition includes countless improvements in notation, format, and clarity of exposition. Also new are several sections describing the - theorem, weak compactness criteria in L1, and Young measure methods for weak convergence. In addition, the bibliography has been updated. Topics are carefully selected and the proofs are succinct, but complete. This book provides ideal reading for mathematicians and graduate students in pure and applied mathematics.
This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include: The multisymplectic and variational nature of Monge-Ampère equations in dimension four Integrability of fifth-order equations admitting a Lie symmetry algebra Applications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfaces A geometric framework to compare classical systems of PDEs in the category of smooth manifolds Groups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.
Uncertainties in GPS Positioning: A Mathematical Discourse describes the calculations performed by a GPS receiver and the problems associated with ensuring that the derived location is a close match to the actual location. Inaccuracies in calculating a location can have serious repercussions, so this book is a timely source for information on this rapidly evolving technology.
Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research. The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian Leonard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject. |
![]() ![]() You may like...
Modeling and Simulating Complex Business…
Zoumpolia Dikopoulou
Hardcover
R3,608
Discovery Miles 36 080
Enhancing Academic Research With…
Dhananjay Subhashchandra Deshpande, Narayan Bhosale, …
Hardcover
R5,421
Discovery Miles 54 210
Contemporary Perspectives in Data Mining
Kenneth D. Lawrence, Ronald K. Klimberg
Hardcover
R2,837
Discovery Miles 28 370
Smart Log Data Analytics - Techniques…
Florian Skopik, Markus Wurzenberger, …
Hardcover
R4,237
Discovery Miles 42 370
Computational Inference and Control of…
Vlado Menkovski
Hardcover
Machine Learning for Intelligent…
Jitendra Kumar Rout, Minakhi Rout, …
Hardcover
R4,604
Discovery Miles 46 040
|