Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
"The Art of Proof" is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
The main contents and character of the monograph did not change with respect to the first edition. However, within most chapters we incorporated quite a number of modifications which take into account the recent development of the field, the very valuable suggestions and comments that we received from numerous colleagues and students as well as our own experience while using the book. Some errors and misprints in the first edition are also corrected. Reiner Horst May 1992 Hoang Tuy PREFACE TO THE FIRST EDITION The enormous practical need for solving global optimization problems coupled with a rapidly advancing computer technology has allowed one to consider problems which a few years aga would have been considered computationally intractable. As a consequence, we are seeing the creation of a large and increasing number of diverse algorithms for solving a wide variety of multiextremal global optimization problems. The goal of this book is to systematically clarify and unify these diverse approaches in order to provide insight into the underlying concepts and their pro perties. Aside from a coherent view of the field much new material is presented."
The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields.
Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgue spaces, representation theorems) is generalized, at least for submodular measures which are characterized by having a subadditive integral. The theory is of interest for applications to economic decision theory (decisions under risk and uncertainty), to statistics (including belief functions, fuzzy measures) to cooperative game theory, artificial intelligence, insurance, etc. Non-Additive Measure and Integral collects the results of scattered and often isolated approaches to non-additive measures and their integrals which originate in pure mathematics, potential theory, statistics, game theory, economic decision theory and other fields of application. It unifies, simplifies and generalizes known results and supplements the theory with new results, thus providing a sound basis for applications and further research in this growing field of increasing interest. It also contains fundamental results of sigma-additive and finitely additive measure and integration theory and sheds new light on additive theory. Non-Additive Measure and Integral employs distribution functions and quantile functions as basis tools, thus remaining close to the familiar language of probability theory. In addition to serving as an important reference, the book can be used as a mathematics textbook for graduate courses or seminars, containing many exercises to support or supplement the text.
Equations of the Ginzburg Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Holder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource."
Preservation of Moduli of Continuity for BersteinType Operators (J.A. Adell, J. de la Cal). Lp-Korovkin Type Inequalities for Positive Linear Operators (G.A. Anastassiou). On Some ShiftInvariate Integral Operators, Multivariate Case (G.A. Anastassiou, H.H. Gonska). Multivariate Probabalistic Wavelet Approximation (G. Anastassiou et al.). Probabalistic Approach to the Rounding Problem with Applications to Fair Representation (B. Athanasopoulos). Limit Theorums for Random Multinomial Forms (A. Basalykas). Multivariate Boolean Trapezoidal Rules (G. Baszenski, F.J. Delvos). Convergence Results for an Extension of the Fourier Transform (C. Belingeri, P.E. Ricci). The Action Constants (B.L. Chalmers, B. Shekhtman). Bivariate Probability Distributions Similar to Exponential (B. Dimitrov et al.). Probability, Waiting Time Results for Pattern and Frequency Quotas in the Same Inverse Sampling Problem Via the Dirichlet (M. Ebneshahrashoob, M. Sobel). 25 additional articles. Index.
This book examines various mathematical toolsa "based on generalized collocation methodsa "to solve nonlinear problems related to partial differential and integro-differential equations. Covered are specific problems and models related to vehicular traffic flow, population dynamics, wave phenomena, heat convection and diffusion, transport phenomena, and pollution. Based on a unified approach combining modeling, mathematical methods, and scientific computation, each chapter begins with several examples and problems solved by computational methods; full details of the solution techniques used are given. The last section of each chapter provides problems and exercises giving readers the opportunity to practice using the mathematical tools already presented. Rounding out the work is an appendix consisting of scientific programs in which readers may find practical guidelines for the efficient application of the collocation methods used in the book. Although the authors make use of MathematicaA(R), readers may use other packages such as MATLABA(R) or MapleTM depending on their specific needs and software preferences. Generalized Collocation Methods is written for an interdisciplinary audience of graduate students, engineers, scientists, and applied mathematicians with an interest in modeling real-world systems by differential or operator equations. The work may be used as a supplementary textbook in graduate courses on modeling and nonlinear differential equations, or as a self-study handbook for researchers and practitioners wishing to expand their knowledge of practical solution techniques for nonlinear problems.
This selection of outstanding articles - an outgrowth of the QMath9 meeting for young scientists - covers new techniques and recent results on spectral theory, statistical mechanics, Bose-Einstein condensation, random operators, magnetic Schrodinger operators and more. The book's pedagogical style makes it a useful introduction to the research literature for postgraduate students. For more expert researchers it will serve as a concise source of modern reference."
Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A."
: So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (@oetqe
These papers from the Workshop on Operator Theory and Complex Analysis review advances in operator theory and complex analysis, and their interplay in applications to mathematical system theory and control. Special attention is paid to different extension and interpolation problems for matrix and operator valued functions. Other topics include: operator inequalities and operator means; matrix completion problems; operators in spaces with indefinite scalar products and non-selfadjoint operators; and scattering and inverse spectral problems. The book should be useful to both pure and applied mathematicians.
This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.
The approach here relies on two beliefs. The first is that almost nobody fully understands calculus the first time around. The second is that graphing calculators can be used to simplify the theory of limits for students. This book presents the theoretical pieces of introductory calculus, using appropriate technology, in a style suitable to accompany almost any first calculus text. It offers a large range of increasingly sophisticated examples and problems to build an understanding of the notion of limit and other theoretical concepts. Aimed at students who will study fields in which the understanding of calculus as a tool is not sufficient, the text uses the "spiral approach" of teaching, returning again and again to difficult topics, anticipating such returns across the calculus courses in preparation for the first analysis course. Suitable as the "content" text for a transition to upper level mathematics course.
"Theory of Function Spaces II" deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as H lder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. "Theory of Function Spaces II" is self-contained, although it may be considered an update of the author 's earlier book of the same title. The book 's 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds.
* Good reference text; clusters well with other Birkhauser integral equations & integral methods books (Estrada and Kanwal, Kythe/Puri, Constanda, et al). * Includes many practical applications/techniques for applied mathematicians, physicists, engineers, grad students. * The contributors to the volume draw from a number of physical domains and propose diverse treatments for various mathematical models through the use of integration as an essential solution tool. * Physically meaningful problems in areas related to finite and boundary element techniques, conservation laws, hybrid approaches, ordinary and partial differential equations, and vortex methods are explored in a rigorous, accessible manner. * The new results provided are a good starting point for future exploitation of the interdisciplinary potential of integration as a unifying methodology for the investigation of mathematical models.
"Configural Frequency Analysis" (CFA) provides an up-to-the-minute
comprehensive introduction to its techniques, models, and
applications. Written in a formal yet accessible style, actual
empirical data examples are used to illustrate key concepts.
Step-by-step program sequences are used to show readers how to
employ CFA methods using commercial software packages, such as SAS,
SPSS, SYSTAT, S-Plus, or those written specifically to perform CFA.
"Configural Frequency Analysis" (CFA) provides an up-to-the-minute
comprehensive introduction to its techniques, models, and
applications. Written in a formal yet accessible style, actual
empirical data examples are used to illustrate key concepts.
Step-by-step program sequences are used to show readers how to
employ CFA methods using commercial software packages, such as SAS,
SPSS, SYSTAT, S-Plus, or those written specifically to perform CFA.
We offer the reader of this book some specimens of "infinity" that we seized from the "mathematical jungle" and trapped within the solid cage of analysis The creation of the theory of singular integral equations in the mid 20th century is associated with the names of N.1. Muskhelishvili, F.D. Gakhov, N.P. Vekua and their numerous students and followers and is marked by the fact that it relied principally on methods of complex analysis. In the early 1960s, the development of this theory received a powerful impulse from the ideas and methods of functional analysis that were then brought into the picture. Its modern architecture is due to a constellation of brilliant mathemati- cians and the scientific collectives that they produced (S.G. Mikhlin, M.G. Krein, B.V. Khvedelidze, 1. Gohberg, LB. Simonenko, A. Devinatz, H. Widom, R.G. Dou- glas, D. Sarason, A.P. Calderon, S. Prossdorf, B. Silbermann, and others). In the ensuing period, the Fredholm theory of singular integral operators with a finite index was completed in its main aspects in wide classes of Banach and Frechet spaces.
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wavelet packets and discrete time wavelet transforms, and concludes with applications in signal processing.
Calculus with Applications, 11th Edition by Lial, Greenwell, and Ritchey, is our most applied text to date, making the math relevant and accessible for students of business, life science, and social sciences. Current applications, many using real data, are incorporated in numerous forms throughout the book, preparing students for success in their professional careers. With this edition, students will find new ways to help them learn the material, such as Warm-Up Exercises and added "help text" within examples.
Translated from the original Russian edition of 1987 (Nauka, Moscow), this volume deals with the theory of multi-frequency oscillations as a motion of a dynamical system which describes a recurrent trajectory on an invariant toroidal manifold of the system. In this way, the invariant toroidal manifo
This monograph is divided into five parts and opens with elements of the theory of singular integral equation solutions in the class of absolutely integrable and non-integrable functions. The second part deals with elements of potential theory for the Helmholtz equation, especially with the reduction of Dirichlet and Neumann problems for Laplace and Helmholtz equations to singular integral equations. Part three contains methods of calculation for different one-dimensional and two-dimensional singular integrals. In this part, quadrature formulas of discrete vortex pair type in the plane case and closed vortex frame type in the spatial case for singular integrals are described for the first time. These quadrature formulas are applied to numerical solutions of singular integral equations of the 1st and 2nd kind with constant and variable coefficients, in part four of the book. Finally, discrete mathematical models of some problems in aerodynamics, electrodynamics and elasticity theory are given.
The book includes the latest high technology on solving very important theoretical and practical problems on solid mechanics, fracture mechanics, structural analysis, elastodynamics, fluid mechanis and aerodynamics, by using linear and non-linear singular integral equation methods. Analytical theories and numerical evaluation methods are investigated and introduced for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations with a very important use in a wide field of engineering mechanics. The proposed Singular Interal Operator Method in many cases offers important advantages over "domain" type solutions, like finite elements and finite difference, as well as analytical methods, such as complex variable methods.
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in PadA(c) theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences. |
You may like...
Single Variable Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Precalculus: Mathematics for Calculus…
James Stewart, Lothar Redlin, …
Paperback
(2)
R2,410 Discovery Miles 24 100
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,540
Discovery Miles 35 400
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,452
Discovery Miles 24 520
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,500
Discovery Miles 25 000
|