![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Many problems for partial difference and integro-difference
equations can be written as difference equations in a normed space.
This book is devoted to linear and nonlinear difference equations
in a normed space. Our aim in this monograph is to initiate
systematic investigations of the global behavior of solutions of
difference equations in a normed space. Our primary concern is to
study the asymptotic stability of the equilibrium solution. We are
also interested in the existence of periodic and positive
solutions. There are many books dealing with the theory of ordinary
difference equations. However there are no books dealing
systematically with difference equations in a normed space. It is
our hope that this book will stimulate interest among
mathematicians to develop the stability theory of abstract
difference equations.
This book offers a complete and detailed introduction to the theory of discrete dynamical systems, with special attention to stability of fixed points and periodic orbits. It provides a solid mathematical background and the essential basic knowledge for further developments such as, for instance, deterministic chaos theory, for which many other references are available (but sometimes, without an exhaustive presentation of preliminary notions). Readers will find a discussion of topics sometimes neglected in the research literature, such as a comparison between different predictions achievable by the discrete time model and the continuous time model of the same application. Another novel aspect of this book is an accurate analysis of the way a fixed point may lose stability, introducing and comparing several notions of instability: simple instability, repulsivity, and complete instability. To help the reader and to show the flexibility and potentiality of the discrete approach to dynamics, many examples, numerical simulations, and figures have been included. The book is used as a reference material for courses at a doctoral or upper undergraduate level in mathematics and theoretical engineering.
This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes' noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes' character formula concerning the Hochschild class of the Chern character.
"Still waters run deep." This proverb expresses exactly how a mathematician Akihito Uchiyama and his works were. He was not celebrated except in the field of harmonic analysis, and indeed he never wanted that. He suddenly passed away in summer of 1997 at the age of 48. However, nowadays his contributions to the fields of harmonic analysis and real analysis are permeating through various fields of analysis deep and wide. One could write several papers explaining his contributions and how they have been absorbed into these fields, developed, and used in further breakthroughs. Peter W. Jones (Professor of Yale University) says in his special contribution to this book that Uchiyama's decomposition of BMO functions is considered to be the Mount Everest of Hardy space theory. This book is based on the draft, which the author Akihito Uchiyama had completed by 1990. It deals with the theory of real Hardy spaces on the n-dimensional Euclidean space. Here the author explains scrupulously some of important results on Hardy spaces by real-variable methods, in particular, the atomic decomposition of elements in Hardy spaces and his constructive proof of the Fefferman-Stein decomposition of BMO functions into the sum of a bounded?function and Riesz transforms of bounded functions.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin', van Gu ik. 'g The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma. coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
The idea of organising a colloquium on turbulence emerged during the sabbatical leave of Prof. Arkady Tsinober in Zurich. New experimental observations and the insight gained through direct numerical simulations have been stimulating research in turbulence and are leading to the developments of new concepts. The organisers felt the necessity to bring together researchers who have contributed significantly to the advances in this field in a colloquium in which the current achievements and the future development in the theoretical, numerical and experimental approaches would be discussed. The main emphasis of the colloquium was put on discussions. These discussions led to an interesting and exciting exchange of ideas, but also involved its very laborious transcription onto paper. It was due to the personal efforts of Mrs. A. Vyskocil, Dr. N. Malik and Dr. X. Studerus that this work could be completed. The colloquium was held in the relaxed atmosphere of the Centro Stefano Franscini in Monte Verita near Ascona, a locality of exceptional natural beauty, which was put at our disposal by the Swiss Federal Institute of Technology. We would like to express our gratitude for this generous financial and logistic support, which contributed considerably to the success of the colloquium. Zurich, April 1993 Th. Dracos, A. Tsinober Participants Adrian, R. J. Kambe, T. Antonia, R. A. Kit,E. Aref, H. Landahl, M. T. Betchov, R. Lesieur, M. Bewersdorff, H. -W. Malik, N. Castaing, B. Moffatt, H. K. Chen, J. Moin,P. Dracos, T. Mullin, T. Frisch, U. Novikov, E. A.
This book examines abstract convex analysis and presents the results of recent research, specifically on parametrizations of Minkowski type dualities and of conjugations of type Lau. It explains the main concepts through cases and detailed proofs.
This volume presents an accessible overview of mathematical control theory and analysis of PDEs, providing young researchers a snapshot of these active and rapidly developing areas. The chapters are based on two mini-courses and additional talks given at the spring school "Trends in PDEs and Related Fields" held at the University of Sidi Bel Abbes, Algeria from 8-10 April 2019. In addition to providing an in-depth summary of these two areas, chapters also highlight breakthroughs on more specific topics such as: Sobolev spaces and elliptic boundary value problems Local energy solutions of the nonlinear wave equation Geometric control of eigenfunctions of Schroedinger operators Research in PDEs and Related Fields will be a valuable resource to graduate students and more junior members of the research community interested in control theory and analysis of PDEs.
Applied Calculus for Business, Economics, and the Social and Life Sciences, Expanded Edition provides a sound, intuitive understanding of the basic concepts students need as they pursue careers in business, economics, and the life and social sciences. Students achieve success using this text as a result of the author's applied and real-world orientation to concepts, problem-solving approach, straight forward and concise writing style, and comprehensive exercise sets. More than 100,000 students worldwide have studied from this text!
Real Analysis is indispensable for in-depth understanding and effective application of methods of modern analysis. This concise and friendly book is written for early graduate students of mathematics or of related disciplines hoping to learn the basics of Real Analysis with reasonable ease. The essential role of Real Analysis in the construction of basic function spaces necessary for the application of Functional Analysis in many fields of scientific disciplines is demonstrated with due explanations and illuminating examples. After the introductory chapter, a compact but precise treatment of general measure and integration is taken up so that readers have an overall view of the simple structure of the general theory before delving into special measures. The universality of the method of outer measure in the construction of measures is emphasized because it provides a unified way of looking for useful regularity properties of measures. The chapter on functions of real variables sits at the core of the book; it treats in detail properties of functions that are not only basic for understanding the general feature of functions but also relevant for the study of those function spaces which are important when application of functional analytical methods is in question. This is then followed naturally by an introductory chapter on basic principles of Functional Analysis which reveals, together with the last two chapters on the space of p-integrable functions and Fourier integral, the intimate interplay between Functional Analysis and Real Analysis. Applications of many of the topics discussed are included to motivate the readers for further related studies; these contain explorations towards probability theory and partial differential equations.
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher¿s Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by email-supplements the text for readers who wish to explore harmonic function theory on a computer.
These proceedings of the international Conference "Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis," held at the Samarkand State University, Uzbekistan in September 2000 bring together fundamental research articles in the major areas of the numerated fields of analysis and mathematical physics. The book covers the following topics: theory of ill-posed problems inverse problems for differential equations boundary value problems for equations of mixed type integral geometry mathematical modelling and numerical methods in natural sciences
Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely Integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the eXisting classificatIOn schemes.
Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: * Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory * Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases * Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics * Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.
In addition to expanding and clarifying a number of sections of the first edition, it generalizes the analysis that eliminates the noncausal pre-acceleration so that it applies to removing any pre-deceleration as well. It also introduces a robust power series solution to the equation of motion that produces an extremely accurate solution to problems such as the motion of electrons in uniform magnetic fields.
From the preface of the author: ..".I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."
This book is devoted to integration, one of the two main operations in calculus. In Part 1, the definition of the integral of a one-variable function is different (not essentially, but rather methodically) from traditional definitions of Riemann or Lebesgue integrals. Such an approach allows us, on the one hand, to quickly develop the practical skills of integration as well as, on the other hand, in Part 2, to pass naturally to the more general Lebesgue integral. Based on the latter, in Part 2, the author develops a theory of integration for functions of several variables. In Part 3, within the same methodological scheme, the author presents the elements of theory of integration in an abstract space equipped with a measure; we cannot do without this in functional analysis, probability theory, etc. The majority of chapters are complemented with problems, mostly of the theoretical type. The book is mainly devoted to students of mathematics and related specialities. However, Part 1 can be successfully used by any student as a simple introduction to integration calculus.
With this fun romp through the world of equations we encounter in our everyday lives, you'll find yourself flipping through the stories of fifty-two formulas faster than a deck of cards. John M. Henshaw's intriguing true accounts, each inspired by a different mathematical equation, are both succinct and easy to read. His tales come from the spheres of sports, business, history, the arts, science, and technology. Anecdotes about famous equations, like E=mc 2, appear alongside tales of not-so-famous-but equally fascinating-equations, such as the one used to determine the SPF number for sunscreen. Drawn from the breadth of human endeavor, Henshaw's stories demonstrate the power and utility of math. He entertains us by exploring the ways that equations can be used to explain, among other things, Ponzi schemes, the placebo effect, "dog years," IQ, the wave mechanics of tsunamis, the troubled modern beekeeping industry, and the Challenger disaster. Smartly conceived and fast paced, his book offers something for anyone curious about math and its impacts.
Is the exponential function computable? Are union and intersection of closed subsets of the real plane computable? Are differentiation and integration computable operators? Is zero finding for complex polynomials computable? Is the Mandelbrot set decidable? And in case of computability, what is the computational complexity? Computable analysis supplies exact definitions for these and many other similar questions and tries to solve them. - Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid basis for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939-2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
These Proceedings contain selected papers by the speakers invited to the Seminar on Deformations, organized in 1985/87 by Julian tawryno- wicz (t6dz), whose most fruitful parts took place in 1986 in Lublin during the 3rd Finnish-Polish Summer School in Complex Analysis [in cooperation with O. Martio (JyvliskyHl)] held simultaneously with the 9th Conference on Analytic Function in Poland [in cooperation with S. Dimiev (Sofia), P. Dolbeault (Paris), K. Spallek (Bochum), and E. Vesen- tini (Pisa)]. The Lublin session of the Seminar, organized jointly with S. Dimiev and K. Spallek, was preceded by a session organized by them at Druzhba (near Varna) in 1985 and followed by a similar session at Druzhba in 1987. The collection contains 31 papers connected with deformations of mathematical structures in the context of complex analysis with physi- cal applications: (quasi)conformal deformation uniformization, potential theory, several complex variables, geometric algebra, algebraic ge- ometry, foliations, Hurwitz pairs, and Hermitian geometry. They are research papers in final form: no version of them will be submitted for publication elsewhere. In contrast to the previous volume (Seminar on Deformations, Proceedings, L6dz-WarsaUJ 1982/84, ed. by J. -i:.awrynowicz, Lecture Notes in Math. 1165, Springer, Berlin-Heidelberg- -New York-Tokyo 1985, X + 331 pp.) open problems are not published as separate research notes, but are included in the papers.
This book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces. |
You may like...
Domain Decomposition Methods in Science…
Thomas Dickopf, Martin J. Gander, …
Paperback
R4,114
Discovery Miles 41 140
Integrability, Self-duality, and Twistor…
L. J. Mason, N.M.J. Woodhouse
Hardcover
R5,301
Discovery Miles 53 010
New Developments in Statistical…
Zhezhen Jin, Mengling Liu, …
Hardcover
R4,614
Discovery Miles 46 140
Bayesian Statistics in Action - BAYSM…
Raffaele Argiento, Ettore Lanzarone, …
Hardcover
R4,653
Discovery Miles 46 530
Model-Driven Development and Operation…
Dana Petcu, Peter Matthews, …
Hardcover
R1,284
Discovery Miles 12 840
|