![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
This book adresses the needs of both researchers and practitioners. It combines a rigorous overview of the mathematics of financial markets with an insight into the practical application of these models to the risk and portfolio management of interest-rate derivatives. It can also serve as a valuable textbook for graduate and PhD students in mathematics who want to get some knowledge about financial markets. The first part of the book is an exposition of advanced stochastic calculus. It defines the theoretical framework for the pricing and hedging of contingent claims with a special focus on interest-rate markets. The second part covers a selection of short and long-term oriented risk measures as well as their application to the risk management of interest -rate portfolios. Interesting and comprehensive case studies are provided to illustrate the theoretical concepts.
During its 2004 meeting in Warsaw the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) decided to support a proposal of the Georgian National Committee to hold in Tbilisi (Georgia), on April 23-27, 2007, the IUTAM Symposium on the Relation of Shell, Plate, Beam, and 3D Models, dedicated to the Centenary of Ilia Vekua. The sci- ti?c organization was entrusted to an international committee consisting of Philipppe G. Ciarlet (Hong Kong), the late Anatoly Gerasimovich Gorshkov (Russia),JornHansen(Canada),GeorgeV.Jaiani(Georgia,Chairman),Re- hold Kienzler (Germany), Herbert A. Mang (Austria), Paolo Podio-Guidugli (Italy), and Gangan Prathap (India). The main topics to be included in the scienti?c programme were c- sen to be: hierarchical, re?ned mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. The main aim of the symposium was to thoroughly discuss the relations of shell, plate, and beam models to the 3D physicalmodels.Inparticular,peculiaritiesofcuspedshells,plates,andbeams were to be emphasized and special attention paid to junction, multibody and ? uid-elastic shell (plate, beam) interaction problems, and their applications. The expected contributions of the invited participants were anticipated to be theoretical, practical, and numerical in character.
The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. Typical examples are the chemical processes in flow reactors and in the catalytic combustion at surfaces. Further examples are models of star formation including diffusive mass transport, energy radiation and dust formation and the polluting transport in soil and waters. For these complex processes mathematical models are established and numerically simulated. The modeling uses multiscale techniques for nonlinear differential equations while for the numerical simulation and optimization goal-oriented mesh and model adaptivity, multigrid techniques and advanced Newton-type methods are developed combined with parallelization. This modeling and simulation is accompanied by experiments.
Numerical Methods for Roots of Polynomials - Part II along with
Part I (9780444527295) covers most of the traditional methods for
polynomial root-finding such as interpolation and methods due to
Graeffe, Laguerre, and Jenkins and Traub. It includes many other
methods and topics as well and has a chapter devoted to certain
modern virtually optimal methods. Additionally, there are pointers
to robust and efficient programs. This book is invaluable to anyone
doing research in polynomial roots, or teaching a graduate course
on that topic.
Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to Rene Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).
Advanced Real Analysis systematically develops those concepts and tools in real analysis that are vital to every mathematician, whether pure or applied, aspiring or established. Along with a companion volume Basic Real Analysis (available separately or together as a Set via the Related Links nearby), these works present a comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics. Key topics and features of Advanced Real Analysis: * Develops Fourier analysis and functional analysis with an eye toward partial differential equations * Includes chapters on Sturma "Liouville theory, compact self-adjoint operators, Euclidean Fourier analysis, topological vector spaces and distributions, compact and locally compact groups, and aspects of partial differential equations * Contains chapters about analysis on manifolds and foundations of probability * Proceeds from the particular to the general, often introducing examples well before a theory that incorporates them * Includes many examples and nearly two hundred problems, and a separate 45-page section gives hints or complete solutions for most of the problems * Incorporates, in the text and especially in the problems, material in which real analysis is used in algebra, in topology, in complex analysis, in probability, in differential geometry, and in applied mathematics of various kinds Advanced Real Analysis requires of the reader a first course in measure theory, including an introduction to the Fourier transform and to Hilbert and Banach spaces. Some familiarity with complex analysis is helpful for certain chapters. Thebook is suitable as a text in graduate courses such as Fourier and functional analysis, modern analysis, and partial differential equations. Because it focuses on what every young mathematician needs to know about real analysis, the book is ideal both as a course text and for self-study, especially for graduate students preparing for qualifying examinations. Its scope and approach will appeal to instructors and professors in nearly all areas of pure mathematics, as well as applied mathematicians working in analytic areas such as statistics, mathematical physics, and differential equations. Indeed, the clarity and breadth of Advanced Real Analysis make it a welcome addition to the personal library of every mathematician.
This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan's mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmuller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22-26 August 2016. The book is a valuable resource for researchers in real and complex analysis.
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto 's achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world's leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations.
During the past decade model predictive control (MPC), also
referred to as receding horizon control or moving horizon control,
has become the preferred control strategy for quite a number of
industrial processes. There have been many significant advances in
this area over the past years, one of the most important ones being
its extension to nonlinear systems. This book gives an up-to-date
assessment of the current state of the art in the new field of
nonlinear model predictive control (NMPC). The main topic areas
that appear to be of central importance for NMPC are covered,
namely receding horizon control theory, modeling for NMPC,
computational aspects of on-line optimization and application
issues. The book consists of selected papers presented at the
International Symposium on Nonlinear Model Predictive Control -
Assessment and Future Directions, which took place from June 3 to
5, 1998, in Ascona, Switzerland.
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.
The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even proofs of theorems often lack rigor, and dubious mathematical practices are not uncommon in the literature for students. In the present text, I have tried to bring to the subject a certain amount of mathematical correctness and make it accessible to un dergraduates. Th this end, this text addresses a number of issues that are rarely considered. For instance, when we apply the Laplace trans form method to a linear ordinary differential equation with constant coefficients, any(n) + an-lY(n-l) + . . . + aoy = f(t), why is it justified to take the Laplace transform of both sides of the equation (Theorem A. 6)? Or, in many proofs it is required to take the limit inside an integral. This is always fraught with danger, especially with an improper integral, and not always justified. I have given complete details (sometimes in the Appendix) whenever this procedure is required. IX X Preface Furthermore, it is sometimes desirable to take the Laplace trans form of an infinite series term by term. Again it is shown that this cannot always be done, and specific sufficient conditions are established to justify this operation."
This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semiconcave functions, and of the role they play in optimal control and Hamilton-Jacobi equations. The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions.
This self-contained work on linear and metric structures focuses on studying continuity and its applications to finite- and infinite-dimensional spaces. The book is divided into three parts. The first part introduces the basic ideas of linear and metric spaces, including the Jordan canonical form of matrices and the spectral theorem for self-adjoint and normal operators. The second part examines the role of general topology in the context of metric spaces and includes the notions of homotopy and degree. The third and final part is a discussion on Banach spaces of continuous functions, Hilbert spaces and the spectral theory of compact operators. Mathematical Analysis: Linear and Metric Structures and Continuity motivates the study of linear and metric structures with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. Other books recently published by the authors include: Mathematical Analysis: Functions of One Variable, and Mathematical Analysis: Approximation and Discrete Processes. with a strong foundation in modern-day analysis.
On the basis of Hua Loo-Kengs results on harmonic analysis on classical groups, the author Gong Sheng develops his subject further, drawing togetherresults of his own research as well as works from other Chinese mathematicians. The book is divided into three parts studying harmonic analysis of various groups. Starting with the discussion on unitary groups in part one, the author moves on to rotation groups and unitary symplectic groups in parts 2 and 3. Thus the book provides a survey of harmonic analysis on characteristic manifold of classical domain of first type for real fields, complex fields and quaternion fields. This study will appeal to a wide range of readers from senior mathematics students up to graduate students and to teachers in this field of mathematics.
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach," and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry."
Mathematical Methods of Analytical Mechanics uses tensor geometry and geometry of variation calculation, includes the properties associated with Noether's theorem, and highlights methods of integration, including Jacobi's method, which is deduced. In addition, the book covers the Maupertuis principle that looks at the conservation of energy of material systems and how it leads to quantum mechanics. Finally, the book deduces the various spaces underlying the analytical mechanics which lead to the Poisson algebra and the symplectic geometry.
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference Fourier Analysis and Pseudo-Differential Operators, June 25 30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series Fourier Analysis and Partial Differential Equations. " |
![]() ![]() You may like...
Premier Piano Express, Book 1
Dennis Alexander, Gayle Kowalchyk, …
Paperback
R331
Discovery Miles 3 310
Promoting Economic and Social…
Oscar Bernardes, Vanessa Amorim
Hardcover
R7,211
Discovery Miles 72 110
|