![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems."
In this book, ring-theoretical properties of skew Laurent series rings A((x; )) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.
The book collects the most significant contributions of the outstanding Czech mathematician Jind ich Ne as, who was honoured with the Order of Merit of the Czech Republic by President Vaclav Havel. Starting with Ne as s brief biography and short comments on his role in the beginnings of modern PDE research in Prague, the book then follows the periods of his research career. The first part is devoted to the linear theory of partial differential equations. Its topics include the variational approach to linear boundary value problems and the Rellich - Ne as inequalities, together with their applications to boundary regularity. The second part is concerned with the regularity for nonlinear elliptic systems, which are related to Hilbert s 19th and 20th problems. The third part focuses on Nonlinear Functional Analysis and its applications to non-linear PDEs, while the last part deals with topics in the mathematical theory of various models in Continuum Mechanics, including elasticity and plasticity, the Navier-Stokes equations, transonic flows, and multipolar fluids. The editorial contributions were written by: I. Babu ka, P. Ciarlet, P. Drabek, M. Feistauer, I. Hlava ek, J. Jaru ek, O. John, J. Kristensen, A. Kufner, J. Malek, G. Mingione, . Ne asova, M. Pokorny, P. Quittner, T. Roubi ek, G. Seregin and J. Stara."
Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then, It is that they can't see the problem. one day, perhaps you will find the final G.K. Chesterton, The Scandal of Fa question. ther Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces."
This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
In January 1992, the Sixth Workshop on Optimization and Numerical Analysis was held in the heart of the Mixteco-Zapoteca region, in the city of Oaxaca, Mexico, a beautiful and culturally rich site in ancient, colonial and modern Mexican civiliza tion. The Workshop was organized by the Numerical Analysis Department at the Institute of Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University, as were the previous ones in 1978, 1979, 1981, 1984 and 1989. As were the third, fourth, and fifth workshops, this one was supported by a grant from the Mexican National Council for Science and Technology, and the US National Science Foundation, as part of the joint Scientific and Technical Cooperation Program existing between these two countries. The participation of many of the leading figures in the field resulted in a good representation of the state of the art in Continuous Optimization, and in an over view of several topics including Numerical Methods for Diffusion-Advection PDE problems as well as some Numerical Linear Algebraic Methods to solve related pro blems. This book collects some of the papers given at this Workshop."
The Proceedings volume contains 16 contributions to the IMPA conference "New Trends in Parameter Identification for Mathematical Models", Rio de Janeiro, Oct 30 - Nov 3, 2017, integrating the "Chemnitz Symposium on Inverse Problems on Tour". This conference is part of the "Thematic Program on Parameter Identification in Mathematical Models" organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.
This monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically beginning with introductory material and leading to the original research of the authors. Topics are motivated with a number of physical examples from the areas of elastic materials, one-dimensional gas dynamics, and waves. Aimed at researchers and graduate students in partial differential equations and related topics, this book will stimulate further research and help readers further understand important aspects and recent progress of regular nonlinear hyperbolic waves.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. The Scandal of Father G. K. Chesterton. 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
This volume corresponds to the invited lectures and advanced research papers presented at the NATD Advanced Study Institute on Nonlinear Stochastic Problems with emphasis on Identification, Signal Processing, Control and Nonlinear Filtering held in Algarve (Portugal), on May 1982. The book is a blend of theoretical issues, algorithmic implementation aspects, and application examples. In many areas of science and engineering, there are problems which are intrinsically nonlinear 3nd stochastic in nature. Clear examples arise in identification and mOdeling, signal processing, nonlinear filtering, stochastic and adaptive conLrol. The meeting was organized because it was felt that there is a need for discussion of the methods and philosophy underlying these different areas, and in order to communicate those approaches that have proven to be effective. As the computational technology progresses, more general approaches to a number of problems which have been treated previously by linearization and perturbation methods become feasible and rewarding.
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
This book gives an up-to-date account of the theory of strongly continuous one-parameter semigroups of linear operators. It includes a systematic discussion of the spectral theory and the long-term behavior of such semigroups. A special feature of the text is an unusually wide range of applications, e.g., to ordinary and partial differential operators, delay and Volterra equations and to control theory, and an emphasis on philosophical motivation and the historical background. The book is written for students, but should also be of value for researchers interested in this field.
This book is designed for students in engineering, physics and mathematics. The material can be taught from the beginning of the third academic year. It could also be used for self study, given its pedagogical structure and the numerous solved problems which prepare for modem physics and technology. One of the original aspects of this work is the development together of the basic theory of tensors and the foundations of continuum mechanics. Why two books in one? Firstly, Tensor Analysis provides a thorough introduction of intrinsic mathematical entities, called tensors, which is essential for continuum mechanics. This way of proceeding greatly unifies the various subjects. Only some basic knowledge of linear algebra is necessary to start out on the topic of tensors. The essence of the mathematical foundations is introduced in a practical way. Tensor developments are often too abstract, since they are either aimed at algebraists only, or too quickly applied to physicists and engineers. Here a good balance has been found which allows these extremes to be brought closer together. Though the exposition of tensor theory forms a subject in itself, it is viewed not only as an autonomous mathematical discipline, but as a preparation for theories of physics and engineering. More specifically, because this part of the work deals with tensors in general coordinates and not solely in Cartesian coordinates, it will greatly help with many different disciplines such as differential geometry, analytical mechanics, continuum mechanics, special relativity, general relativity, cosmology, electromagnetism, quantum mechanics, etc .."
An Introduction to Nonlinear Analysis: Applications offers an exposition of the main applications of Nonlinear Analysis. Its starting point is a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. This book is an excellent springboard for anyone wishing to conduct advanced research or work on a postgraduate text. Many exercises and their solutions complement the presentation. The text is a companion to An Introduction to Nonlinear Analysis: Theory by the same authors.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This volume represents a broad survey of current research in the
fields of nonlinear analysis and nonlinear differential equations.
It is dedicated to Djairo G. de Figueiredo on the occasion of his
70th birthday. The collection of 34 research and survey articles
reflects the wide range of interests of Djairo de Figueiredo,
including:
Harmonic analysis and probability have long enjoyed a mutually beneficial relationship that has been rich and fruitful. This monograph, aimed at researchers and students in these fields, explores several aspects of this relationship. The primary focus of the text is the nontangential maximal function and the area function of a harmonic function and their probabilistic analogues in martingale theory. The text first gives the requisite background material from harmonic analysis and discusses known results concerning the nontangential maximal function and area function, as well as the central and essential role these have played in the development of the field.The book next discusses further refinements of traditional results: among these are sharp good-lambda inequalities and laws of the iterated logarithm involving nontangential maximal functions and area functions. Many applications of these results are given. Throughout, the constant interplay between probability and harmonic analysis is emphasized and explained. The text contains some new and many recent results combined in a coherent presentation.
This textbook gives a comprehensive introduction to stochastic processes and calculus in the fields of finance and economics, more specifically mathematical finance and time series econometrics. Over the past decades stochastic calculus and processes have gained great importance, because they play a decisive role in the modeling of financial markets and as a basis for modern time series econometrics. Mathematical theory is applied to solve stochastic differential equations and to derive limiting results for statistical inference on nonstationary processes. This introduction is elementary and rigorous at the same time. On the one hand it gives a basic and illustrative presentation of the relevant topics without using many technical derivations. On the other hand many of the procedures are presented at a technically advanced level: for a thorough understanding, they are to be proven. In order to meet both requirements jointly, the present book is equipped with a lot of challenging problems at the end of each chapter as well as with the corresponding detailed solutions. Thus the virtual text - augmented with more than 60 basic examples and 40 illustrative figures - is rather easy to read while a part of the technical arguments is transferred to the exercise problems and their solutions.
As its title indicates, this book is intended to serve as a textbook for an introductory course in mathematical analysis. In preliminary form the book has been used in this way at the University of Michigan, Indiana University, and Texas A&M University, and has proved serviceable. In addition to its primary purpose as a textbook for a formal course, however, it is the authors' hope that this book will also prove of value to readers interested in studying mathematical analysis on their own. Indeed, we believe the wealth and variety of examples and exercises will be especially conducive to this end. A word on prerequisites. With what mathematical background might a prospective reader hope to profit from the study of this book? Our con scious intent in writing it was to address the needs of a beginning graduate student in mathematics, or, to put matters slightly differently, a student who has completed an undergraduate program with a mathematics ma jor. On the other hand, the book is very largely self-contained and should therefore be accessible to a lower classman whose interest in mathematical analysis has already been awakened."
Kiyosi Ito, the founder of stochastic calculus, is one of the few central figures of the twentieth century mathematics who reshaped the mathematical world. Today stochastic calculus is a central research field with applications in several other mathematical disciplines, for example physics, engineering, biology, economics and finance. The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over the world were invited to present the newest developments within the exciting and fast growing field of stochastic analysis. The present volume combines both papers from the invited speakers and contributions by the presenting lecturers. A special feature is the Memoirs that Kiyoshi Ito wrote for this occasion. These are valuable pages for both young and established researchers in the field.
Probably, we are obliged to Science, more than to any other field of the human activity, for the origin of our sense that collective efforts are necessary indeed. F. Joliot-Curie The study of autowave processes is a young science. Its basic concepts and methods are still in the process of formation, and the field of its applications to various domains of natural sciences is expanding continuously. Spectacular examples of various autowave processes are observed experimentally in numerous laboratories of quite different orientations, dealing with investigations in physics, chemistry and biology. It is O1). r opinion, however, that if a history of the discovery of autowaves will he written some day its author should surely mention three fundamental phenomena which were the sources of the domain in view. "Ve mean combustion and phase transition waves, waves in chemical reactors where oxidation-reduction processes take place, and propagation of excitations in nerve fibres. The main tools of the theory of autowave processes are various methods used for investigating nonlinear discrete or distributed oscillating systems, the mathe matical theory of nonlinear parabolic differential equations, and methods of the theory of finite automata. It is noteworthy that the theory of autowave, ., has been greatly contributed to be work of brilliant mathematicians who anticipated the experimental discoveries in their abstract studies. One should mention R. Fishel' (1937), A. N. Kolmogorov, G. 1. Petrovskii, and N. S. Piskunov (1937), N. Wiener and A. Rosenbluth (1946), A. Turing (1952)."
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Schur analysis originates with a 1917 paper by Schur where he associated to a function analytic and contractive in the open unit disk a sequence, finite or infinite, of numbers in the open unit disk, called Schur coefficients. In signal processing, they are often called reflection coefficients. Under the word "Schur analysis" one encounters a variety of problems related to Schur functions such as interpolation problems, moment problems, study of the relationships between the Schur coefficients and the properties of the function, study of underlying operators and others. This volume is almost entirely dedicated to the analysis of Schur and CarathA(c)odory functions and to the solutions of problems for these classes. |
You may like...
Handbook of Research on Web Log Analysis
Bernard J Jansen, Amanda Spink, …
Hardcover
R6,726
Discovery Miles 67 260
Learn to Design a Website for Your…
Michael Nelson, David Ezeanaka
Hardcover
R466
Discovery Miles 4 660
Visualizing the Semantic Web - XML-based…
Vladimir Geroimenko, Chaomei Chen
Hardcover
R2,682
Discovery Miles 26 820
User Experience Re-Mastered - Your Guide…
Chauncey Wilson
Paperback
|