Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations.
Thisvolumeofthe Operator Theory: Advances and Applications series (OTAA) isthe ?rst volume of a new subseries. This subseries is dedicated to connections between the theory of linear operators and the mathematical theory of linear systems and is named Linear Operators and Linear Systems (LOLS).Asthe- isting subseries Advances in Partial Di?erential Equations (ADPE), the new s- series will continue the traditions of the OTAA series and keep the high quality of the volumes. The editors of the new subseries are: Daniel Alpay (Beer-Sheva, - rael), Joseph Ball (Blacksburg, Virginia, USA) and Andr e Ran (Amsterdam, The Netherlands). In the last 25-30 years, Mathematical System Theory developed in an ess- tial way. A large part of this development was connected with the use of the state space method. Let us mention for instance the "theory of H control". The state ? space method allowed to introduce in system theory the modern tools of matrix and operator theory. On the other hand the state space approach had an imp- tant impact on Algebra, Analysis and Operator Theory. In particular it allowed to solve explicitly some problems from interpolation theory, theory of convolution equations, inverse problems for canonical di?erential equations and their discrete analogs. All these directions are planned to be present in the subseries LOLS. The editors and the publisher are inviting authors to submit their manuscripts for publication in this subseries.
This book combining wavelets and the world of the spectrum focuses on recent developments in wavelet theory, emphasizing fundamental and relatively timeless techniques that have a geometric and spectral-theoretic flavor. The exposition is clearly motivated and unfolds systematically, aided by numerous graphics.This self-contained book deals with important applications to signal processing, communications engineering, computer graphics algorithms, qubit algorithms and chaos theory, and is aimed at a broad readership of graduate students, practitioners, and researchers in applied mathematics and engineering. The book is also useful for other mathematicians with an interest in the interface between mathematics and communication theory.
This textbook features applications including a proof of the Fundamental Theorem of Algebra, space filling curves, and the theory of irrational numbers. In addition to the standard results of advanced calculus, the book contains several interesting applications of these results. The text is intended to form a bridge between calculus and analysis. It is based on the authors lecture notes used and revised nearly every year over the last decade. The book contains numerous illustrations and cross references throughout, as well as exercises with solutions at the end of each section.
This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs). Phase space analysis methods, also known as microlocal analysis, have continued to yield striking results over the past years and are now one of the main tools of investigation of PDEs. Their role in many applications to physics, including quantum and spectral theory, is equally important. Key topics addressed in this volume include: *general theory of pseudodifferential operators *Hardy-type inequalities *linear and non-linear hyperbolic equations and systems *Schroedinger equations *water-wave equations *Euler-Poisson systems *Navier-Stokes equations *heat and parabolic equations Various levels of graduate students, along with researchers in PDEs and related fields, will find this book to be an excellent resource. Contributors T. Alazard P.I. Naumkin J.-M. Bony F. Nicola N. Burq T. Nishitani C. Cazacu T. Okaji J.-Y. Chemin M. Paicu E. Cordero A. Parmeggiani R. Danchin V. Petkov I. Gallagher M. Reissig T. Gramchev L. Robbiano N. Hayashi L. Rodino J. Huang M. Ruzhanky D. Lannes J.-C. Saut F. Linares N. Visciglia P.B. Mucha P. Zhang C. Mullaert E. Zuazua T. Narazaki C. Zuily
It is hard to imagine that another elementary analysis book would contain ma terial that in some vision could qualify as being new and needed for a discipline already abundantly endowed with literature. However, to understand analysis, be ginning with the undergraduate calculus student through the sophisticated math ematically maturing graduate student, the need for examples and exercises seems to be a constant ingredient to foster deeper mathematical understanding. To a talented mathematical student, many elementary concepts seem clear on their first encounter. However, it is the belief of the authors, this understanding can be deepened with a guided set of exercises leading from the so called "elementary" to the somewhat more "advanced" form. Insight is instilled into the material which can be drawn upon and implemented in later development. The first year graduate student attempting to enter into a research environment begins to search for some original unsolved area within the mathematical literature. It is hard for the student to imagine that in many circumstances the advanced mathematical formulations of sophisticated problems require attacks that draw upon, what might be termed elementary techniques. However, if a student has been guided through a serious repertoire of examples and exercises, he/she should certainly see connections whenever they are encountered."
The approach of layer-damping coordinate transformations to treat singularly perturbed equations is a relatively new, and fast growing area in the field of applied mathematics. This monograph aims to present a clear, concise, and easily understandable description of the qualitative properties of solutions to singularly perturbed problems as well as of the essential elements, methods and codes of the technology adjusted to numerical solutions of equations with singularities by applying layer-damping coordinate transformations and corresponding layer-resolving grids. The first part of the book deals with an analytical study of estimates of the solutions and their derivatives in layers of singularities as well as suitable techniques for obtaining results. In the second part, a technique for building the coordinate transformations eliminating boundary and interior layers, is presented. Numerical algorithms based on the technique which is developed for generating layer-damping coordinate transformations and their corresponding layer-resolving meshes are presented in the final part of this volume. This book will be of value and interest to researchers in computational and applied mathematics.
Multivariate polynomials are a main tool in approximation. The book begins with an introduction to the general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book gives the first comprehensive introduction to the recently developped theory of generalized hyperinterpolation. As an application, the book gives a quick introduction to tomography. Several parts of the book are based on rotation principles, which are presented in the beginning of the book, together with all other basic facts needed.
This is the proceedings of the "8th IMACS Seminar on Monte Carlo Methods" held from August 29 to September 2, 2011 in Borovets, Bulgaria, and organized by the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences in cooperation with the International Association for Mathematics and Computers in Simulation (IMACS). Included are 24 papers which cover all topics presented in the sessions of the seminar: stochastic computation and complexity of high dimensional problems, sensitivity analysis, high-performance computations for Monte Carlo applications, stochastic metaheuristics for optimization problems, sequential Monte Carlo methods for large-scale problems, semiconductor devices and nanostructures. The history of the IMACS Seminar on Monte Carlo Methods goes back to April 1997 when the first MCM Seminar was organized in Brussels: 1st IMACS Seminar, 1997, Brussels, Belgium 2nd IMACS Seminar, 1999, Varna, Bulgaria 3rd IMACS Seminar, 2001, Salzburg, Austria 4th IMACS Seminar, 2003, Berlin, Germany 5th IMACS Seminar, 2005, Tallahassee, USA 6th IMACS Seminar, 2007, Reading, UK 7th IMACS Seminar, 2009, Brussels, Belgium 8th IMACS Seminar, 2011, Borovets, Bulgaria
This book aims at restructuring some fundamentals in measure and integration theory. It centers around the ubiquitous task to produce appropriate contents and measures from more primitive data like elementary contents and elementary integrals. It develops the new approach started around 1970 by Topsoe and others into a systematic theory. The theory is much more powerful than the traditional means and has striking implications all over measure theory and beyond.
¿The author describes this marvelous book as designed for beginning graduate students in mathematics¿-in particular for those who intend to specialize in applied mathematics, and for graduate students in other disciplines such as engineering, physics and computer science. The first six chapters contain enough material for a year course, and the final two chapters contain related material¿ Those who are familiar with the author¿s earlier books will not be surprised by its excellence. It is businesslike and will be found to be demanding, but it is user-friendly. It is the reviewer¿s opinion that it will be extremely useful and popular as a text; institutions that do not already require their students to take such a course no longer have an excuse, and should immediately organize one based on this book.¿ ¿Mathematical Reviews
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and probability theory. In the 1960's, Rota was motivated by problems in fluctuation theory to study some operator identities of Glen Baxter (see [7]). Together with other problems in probability theory, this led Rota to study combinatorics. His series of papers, "On the foundations of combi natorial theory", led to a fundamental re-evaluation of the subject. Later, in the 1990's, Rota returned to some of the problems in analysis and probability theory which motivated his work in combinatorics. This was his intention all along, and his early death robbed mathematics of his unique perspective on linkages between the discrete and the continuous. Glimpses of his new research programs can be found in [2,3,6,9,10].
In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. 25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146]."
While there are many excellent books available on fundamental and applied electromagnetics, most introduce operator concepts in an ad hoc manner, and few discuss the subject within the general framework of operator theory. This is in contrast to quantum theory, where the use of operators and concepts from functional analysis is common. However, casting electromagnetic problems in terms of operator theory produces useful insights into the mathematical properties and physical characteristics of solutions. For instance, the commonly used modal expansion of fields in waveguides are immediately justified upon identifying the differential operators as being of the appropriate Sturm-Liouville type. As another example, existence, uniqueness and solvability of integral formulations can often be settled by appealing to the theory of Fredholm operators. Many other examples that illustrate the value of abstracting problems to an operator level are provided. Although the book focuses on mathematical fundamentals, it is written from the perspective of engineers and applied scientists working in electromagnetics. The book begins with a review of electromagnetic theory, including a discussion of singular integral operators commonly encountered in applications. It then turns to a self-contained introduction to operator theory, including basic functional analysis, linear operators, Green¿s functions and Green¿s operators, spectral theory, and Sturm-Liouville operators. The discussion is at an introductory mathematical level, presenting definitions and theorems, as well as proofs of the theorems when these are particularly simple or enlightening. The tools developed in this first part of the book are then applied to problems in classical electromagnetic theory: boundary-value problems and potential theory, transmission lines, waves in layered media, scattering problems in waveguides, and electromagnetic cavities.
The aim of this monograph is to give a unified account fo the classical topics in fixed point theory that lie on the border-line of topology and non-linear functional analysis, emphasizing the topological developments related to the Leray-Schauder theory. The first part of this book is based on "Fixed Point Theory I" which was published by PWN, Warsaw in 1982. The second part follows the outline conceived by Andrzej Granas and the late James Dugunji. The completionof this work has been awaited for many years by researchers in this area. "If the authors do equally well with the second volume they will have produced the best monograph in this particular field."Math Reviews
This new edition is intended for third and fourth year undergraduates in Engineering, Physics, Mathematics, and the Applied Sciences, and can serve as a springboard for further work in Continuum Mechanics or General Relativity. Starting from a basic knowledge of calculus and matrix algebra, together with fundamental ideas from mechanics and geometry, the text gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics. The mathematics of tensor analysis is introduced in well-separated stages: the concept of a tensor as an operator; the representation of a tensor in terms of its Cartesian components; the components of a tensor relative to a general basis, tensor notation, and finally, tensor calculus. The physical interpretation and application of vectors and tensors are stressed throughout. Though concise, the text is written in an informal, non-intimidating style enhanced by worked-out problems and a meaningful variety of exercises. The new edition includes more exercises, especially at the end of chapter IV. Furthermore, the author has appended a section on Differential Geometry, the essential mathematical tool in the study of the 2-dimensional structural shells and 4-dimensional general relativity.
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrodinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. "
This third of the three-volume book is targeted as a basic course in algebraic topology and topology for fiber bundles for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, and algebra. Topics covered in this volume include homotopy theory, homology and cohomology theories, homotopy theory of fiber bundles, Euler characteristic, and the Betti number. It also includes certain classic problems such as the Jordan curve theorem along with the discussions on higher homotopy groups and establishes links between homotopy and homology theories, axiomatic approach to homology and cohomology as inaugurated by Eilenberg and Steenrod. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power and active learning of the subject, all the while covering a wide range of theory and applications in a balanced unified way.
The theory of approximation of functions is one of the central branches in mathematical analysis and has been developed over a number of decades. This monograph deals with a series of problems related to one of the directions of the theory, namely, the approximation of periodic functions by trigonometric polynomials generated by linear methods of summation of Fourier series. More specific, the following linear methods are investigated: classical methods of Fourier, Fejir, Riesz, and Roginski. For these methods the so-called Kolmogorov-Nikol'skii problem is considered, which consists of finding exact and asymptotically exact qualities for the upper bounds of deviations of polynomials generated by given linear methods on given classes of 2?-periodic functions. Much attention is also given to the multidimensional case. The material presented in this monograph did not lose its importance since the publication of the Russian edition (1981). Moreover, new material has been added and several corrections were made. In this field of mathematics numerous deep results were obtained, many important and complicated problems were solved, and new methods were developed, which can be extremely useful for many mathematicians. All principle problems considered in this monograph are given in the final form, i.e. in the form of exact asymptotic equalities, and, therefore, retain their importance and interest for a long time.
In this book, ring-theoretical properties of skew Laurent series rings A((x; )) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.
Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations. When solving such problems, in many cases it is fairly easy to obtain the Laplace transform, while it is very demanding to determine the inverse Laplace transform which is the solution of a given problem. Sometimes, after some difficult contour integration we may find that a series solution results, but this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods which are available at the current time. Computer programs are included for those methods which perform consistently well on a wide range of Laplace transforms.
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
1 More than thirty years after its discovery by Abraham Robinson, the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum, as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians."
In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called Nonstandard analysis'. Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
|
You may like...
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,831
Discovery Miles 28 310
Precalculus: Mathematics for Calculus…
James Stewart, Lothar Redlin, …
Paperback
(2)
R2,410 Discovery Miles 24 100
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,540
Discovery Miles 35 400
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,452
Discovery Miles 24 520
|