![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book's final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.
Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive overview, that would highlight the main issues and also the problems that still remain open. The authors give a comprehensive treatment of the Harnack inequality for non-negative solutions to p-laplace and porous medium type equations, both in the degenerate (p2 or m1) and in the singular range (1p<2 or 0m<1), starting from the notion of solution and building all the necessary technical tools. The book is self-contained. Building on a similar monograph by the first author, the authors of the present book focus entirely on the Harnack estimates and on their applications: indeed a number of known regularity results are given a new proof, based on the Harnack inequality. It is addressed to all professionals active in the field, and also to advanced graduate students, interested in understanding the main issues of this fascinating research field.
Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.
This book is a useful overview of results in multivariate probability distributions and multivariate analysis as well as a reference to harmonic analysis on symmetric cones adapted to the needs of researchers in analysis and probability theory.
Written by internationally renowned mathematicians, this state-of-the-art textbook examines four research directions in harmonic analysis and features some of the latest applications in the field. The work is the first one that combines spline theory, wavelets, frames, and time-frequency methods leading up to a construction of wavelets on manifolds other than Rn. Four Short Courses on Harmonic Analysis is intended as a graduate-level textbook for courses or seminars on harmonic analysis and its applications. The work is also an excellent reference or self-study guide for researchers and practitioners with diverse mathematical backgrounds working in different fields such as pure and applied mathematics, image and signal processing engineering, mathematical physics, and communication theory.
Formed of presented papers this volume contains research from the 40th International Conference on Boundary Elements and other Mesh Reduction Methods, recognised as THE international forum for the latest advances in these techniques and their applications in science and engineering. The ongoing success of this series is a result of the strength of research being carried out all over the world and the coverage has continually evolved in line with the latest developments in the field. The books originating from this conference series constitute a record of the development of BEM/MRM, running from the initial successful development of boundary integral techniques into the boundary element method, a technique that eliminates the need for an internal mesh, to the recent and most sophisticated Mesh Reduction and even Meshless Methods. Since these methods are used in many engineering and scientific fields the 2017 book, Boundary Elements and other Mesh Reduction Methods, like the series before, will be of great interest to those working within the areas of numerical analysis, boundary elements and meshless methods. The research papers included in this volume cover: Advanced formulations; Advanced meshless and mesh reduction methods; Structural mechanics applications; Solid mechanics; Heat and mass transfer; Electrical engineering and electromagnetics; Computational methods; Fluid flow modelling; Damage mechanics and fracture; Dynamics and vibrations; Engineering applications; Interfacing with other methods; Coupling with design and manufacturing; Solution of large systems of equations.
This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
This book presents a systematic methodology for the development of parallel multi-physics models and its implementation in geophysical and biomedical applications. The methodology includes conservative discretization methods for partial differential equations on general meshes, as well as data structures and algorithms for organizing parallel simulations on general meshes. The structures and algorithms form the core of the INMOST (Integrated Numerical Modelling Object-oriented Supercomputing Technologies) platform for the development of parallel models on general meshes. The authors consider applications for addressing specific geophysical and biomedical challenges, including radioactive contaminant propagation with subsurface waters, reservoir simulation, and clot formation in blood flows. The book gathers all the components of this methodology, from algorithms and numerical methods to the open-source software, as well as examples of practical applications, in a single source, making it a valuable asset for applied mathematicians, computer scientists, and engineers alike.
Chapter 1 introduces elementary classical special functions. Gamma, beta, psi, zeta functions, hypergeometric functions and the associated special functions, generalizations to Meijer's G and Fox's H-functions are examined here. Discussion is confined to basic properties and selected applications. Introduction to statistical distribution theory is provided. Some recent extensions of Dirichlet integrals and Dirichlet densities are discussed. A glimpse into multivariable special functions such as Appell's functions and Lauricella functions is part of Chapter 1. Special functions as solutions of differential equations are examined. Chapter 2 is devoted to fractional calculus. Fractional integrals and fractional derivatives are discussed. Their applications to reaction-diffusion problems in physics, input-output analysis, and Mittag-Leffler stochastic processes are developed. Chapter 3 deals with q-hyper-geometric or basic hypergeometric functions. Chapter 4 covers basic hypergeometric functions and Ramanujan's work on elliptic and theta functions. Chapter 5 examines the topic of special functions and Lie groups. Chapters 6 to 9 are devoted to applications of special functions. Applications to stochastic processes, geometric infinite divisibility of random variables, Mittag-Leffler processes, alpha-Laplace processes, density estimation, order statistics and astrophysics problems, are dealt with in Chapters 6 to 9. Chapter 10 is devoted to wavelet analysis. An introduction to wavelet analysis is given. Chapter 11 deals with the Jacobians of matrix transformations. Various types of matrix transformations and the associated Jacobians are provided. Chapter 12 is devoted to the discussion offunctions of matrix argument in the real case. Functions of matrix argument and the pathway models along with their applications are discussed.
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors give a general overview on permutation tests with a focus on recent theoretical advances within univariate and multivariate complex permutation testing problems, this book brings the reader completely up to date with today's current thinking. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing.Includes extensive software codes in MATLAB, R and SAS, featuring worked examples, and uses real case studies from both experimental and observational studies.Includes a standalone free software NPC Test Release 10 with a graphical interface which allows practitioners from every scientific field to easily implement almost all complex testing procedures included in the book.Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses.A supplementary website containing all of the data sets examined in the book along with ready to use software codes. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book.
Form Symmetries and Reduction of Order in Difference Equations presents a new approach to the formulation and analysis of difference equations in which the underlying space is typically an algebraic group. In some problems and applications, an additional algebraic or topological structure is assumed in order to define equations and obtain significant results about them. Reflecting the author's past research experience, the majority of examples involve equations in finite dimensional Euclidean spaces. The book first introduces difference equations on groups, building a foundation for later chapters and illustrating the wide variety of possible formulations and interpretations of difference equations that occur in concrete contexts. The author then proposes a systematic method of decomposition for recursive difference equations that uses a semiconjugate relation between maps. Focusing on large classes of difference equations, he shows how to find the semiconjugate relations and accompanying factorizations of two difference equations with strictly lower orders. The final chapter goes beyond semiconjugacy by extending the fundamental ideas based on form symmetries to nonrecursive difference equations. With numerous examples and exercises, this book is an ideal introduction to an exciting new domain in the area of difference equations. It takes a fresh and all-inclusive look at difference equations and develops a systematic procedure for examining how these equations are constructed and solved.
Complementarity theory, a relatively new domain in applied mathematics, has deep connections with several aspects of fundamental mathematics and also has many applications in optimization, economics and engineering. The study of variational inequalities is another domain of applied mathematics with many applications to the study of certain problems with unilateral conditions. This book is the first to discuss complementarity theory and variational inequalities using Leray-Schauder type alternatives. The ideas and method presented in this book may be considered as a starting point for new developments.
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
This monograph presents a novel method of sliding mode control for switch-regulated nonlinear systems. The Delta Sigma modulation approach allows one to implement a continuous control scheme using one or multiple, independent switches, thus effectively merging the available linear and nonlinear controller design techniques with sliding mode control. Sliding Mode Control: The Delta-Sigma Modulation Approach, combines rigorous mathematical derivation of the unique features of Sliding Mode Control and Delta-Sigma modulation with numerous illustrative examples from diverse areas of engineering. In addition, engineering case studies demonstrate the applicability of the technique and the ease with which one can implement the exposed results. This book will appeal to researchers in control engineering and can be used as graduate-level textbook for a first course on sliding mode control.
This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog's theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz's rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties.
This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB (R) including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.
Thepresentbookisamemorialvolumedevotedtoourfriend,colleagueandteacher Peter Jonas who passed away on July 18, 2007. It displays recent advances in modern operator theory in Hilbert and Krein spaces and contains a collection of original research papers written by participants of the 7th Workshop on Operator Theory in Krein Spaces and Spectral Analysis, which was held at the Technische Universit. at Berlin, Germany, December 13 to 16, 2007. The articles in this v- ume contain new results for problems close to the area of research of Peter Jonas: Spectralandperturbationproblemsfor operatorsininner productspaces,gener- ized Nevanlinna functions and de?nitizable functions, scattering theory, extension theory for symmetric operators, ?xed points, hyperbolic matrix polynomials, - ment problems, inde?nite spectral and Sturm-Liouville problems, and invariant subspace problems. It is a pleasure to acknowledge the substantial ?nancial support for the 7th Workshop on Operator Theory in Krein Spaces and Spectral Analysis received from the - Berlin Mathematical School (BMS) - Gesellschaft fur .. Angewandte Mathematik und Mechanik (GAMM) - International Mathematical Union, Commission on Development and Exchanges - Institute of Mathematics of the Technische Universit. at Berlin The Editors Peter Jonas (1941-2007) In Memoriam Peter Jonas (1941-2007) Jussi Behrndt, Karl-Heinz F.. orster and Carsten Trunk Peter Jonas was born on July 18, 1941, in Memel, now Klaipeda, which was at thattime the mosteasterntownofEastPrussia.After the war,PeterJonasmoved with his mother and grandmother to Blankenfelde - a small village near Berlin, where he lived until the end of his school education.
The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields.
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2011) held in Evora, Portugal, on September 15-16, 2011. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-Chief Jurgen Appell, Wurzburg, Germany Honorary and Advisory Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Alfonso Vignoli, Rome, Italy Editorial Board Manuel del Pino, Bath, UK, and Santiago, Chile Mikio Kato, Nagano, Japan Wojciech Kryszewski, Torun, Poland Vicentiu D. Radulescu, Krakow, Poland Simeon Reich, Haifa, Israel Please submit book proposals to Jurgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019) Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019) Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019) Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy-Leray Potential (2020) Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020) Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)
Exponential Fitting is a procedure for an efficient numerical approach of functions consisting of weighted sums of exponential, trigonometric or hyperbolic functions with slowly varying weight functions. This book is the first one devoted to this subject. Operations on the functions described above like numerical differentiation, quadrature, interpolation or solving ordinary differential equations whose solution is of this type, are of real interest nowadays in many phenomena as oscillations, vibrations, rotations, or wave propagation. The authors studied the field for many years and contributed to it. Since the total number of papers accumulated so far in this field exceeds 200 and the fact that these papers are spread over journals with various profiles (such as applied mathematics, computer science, computational physics and chemistry) it was time to compact and to systematically present this vast material. In this book, a series of aspects is covered, ranging from the theory of the procedure up to direct applications and sometimes including ready to use programs. The book can also be used as a textbook for graduate students. It comes with a complimentary CD Rom.
This book covers the fundamental results of the dimension theory of metrizable spaces, especially in the separable case. Its distinctive feature is the emphasis on the negative results for more general spaces, presenting a readable account of numerous counterexamples to well-known conjectures that have not been discussed in existing books. Moreover, it includes three new general methods for constructing spaces: Mrowka's psi-spaces, van Douwen's technique of assigning limit points to carefully selected sequences, and Fedorchuk's method of resolutions. Accessible to readers familiar with the standard facts of general topology, the book is written in a reader-friendly style suitable for self-study. It contains enough material for one or more graduate courses in dimension theory and/or general topology. More than half of the contents do not appear in existing books, making it also a good reference for libraries and researchers. |
![]() ![]() You may like...
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R6,439
Discovery Miles 64 390
Emerging Trends and Applications in…
Pradeep Kumar Mallick, Samarjeet Borah
Hardcover
R5,784
Discovery Miles 57 840
Hybrid Soft Computing Approaches…
Siddhartha Bhattacharyya, Paramartha Dutta, …
Hardcover
Developing Technology Mediation in…
Filomena Soares, Ana Paula Lopes, …
Hardcover
R5,828
Discovery Miles 58 280
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
Embedded and Real Time System…
Mohammad Ayoub Khan, Saqib Saeed, …
Hardcover
R3,659
Discovery Miles 36 590
Technological Innovation for Applied AI…
Luis M. Camarinha-Matos, Pedro Ferreira, …
Hardcover
R3,419
Discovery Miles 34 190
|