![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The monograph is devoted to the study of functional equations
with the transformed argument on the real line and on the unit
circle. Such equations systematically arise in dynamical systems,
differential equations, probabilities, singularities of smooth
mappings, and other areas. The purpose of the book is to present
modern methods and new results in the subject, with an emphasis on
a connection between local and global solvability. The general
concepts developed in the book are applicable to multidimensional
functional equations. Some of the methods are presented for the
first time in the monograph literature.
This book attempts to place the basic ideas of real analysis and numerical analysis together in an applied setting that is both accessible and motivational to young students. The essentials of real analysis are presented in the context of a fundamental problem of applied mathematics, which is to approximate the solution of a physical model. The framework of existence, uniqueness, and methods to approximate solutions of model equations is sufficiently broad to introduce and motivate all the basic ideas of real analysis. The book includes background and review material, numerous examples, visualizations and alternate explanations of some key ideas, and a variety of exercises ranging from simple computations to analysis and estimates to computations on a computer. The book can be used in an honor calculus sequence typically taken by freshmen planning to major in engineering, mathematics, and science, or in an introductory course in rigorous real analysis offered to mathematics majors. Donald Estep is Professor of Mathematics at Colorado State University. He is the author of Computational Differential Equations, with K. Eriksson, P. Hansbo and C. Johnson (Cambridge University Press 1996) and Error of Numerical Solutions of Systems of Nonlinear Reaction-Diffusion Equations with M. Larson and R. Williams (A.M.S. 2000), and recently co-edited Collected Lectures on the Preservation of Stability under Discretization, with Simon Tavener (S.I.A.M., 2002), as well as numerous research articles. His research interests include computational error estimation and adaptive finite element methods, numerical solution of evolutionary problems, and computational investigation of physical models.
This book presents an introduction into Robinson's nonstandard analysis. Nonstandard analysis is the application of model theory in analysis. However, the reader is not expected to have any background in model theory; instead, some background in analysis, topology, or functional analysis would be useful - although the book is as much self-contained as possible and can be understood after a basic calculus course. Unlike some other texts, it does not attempt to teach elementary calculus on the basis of nonstandard analysis, but it points to some applications in more advanced analysis. Such applications can hardly be obtained by standard methods such as a deeper investigation of Hahn-Banach limits or of finitely additive measures.
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.
The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.
This work, consisting of expository articles as well as research papers, highlights recent developments in nonlinear analysis and differential equations. The material is largely an outgrowth of autumn school courses and seminars held at the University of Lisbon and has been thoroughly refereed. Several topics in ordinary differential equations and partial differential equations are the focus of key articles, including: * periodic solutions of systems with p-Laplacian type operators (J. Mawhin) * bifurcation in variational inequalities (K. Schmitt) * a geometric approach to dynamical systems in the plane via twist theorems (R. Ortega) * asymptotic behavior and periodic solutions for Navier--Stokes equations (E. Feireisl) * mechanics on Riemannian manifolds (W. Oliva) * techniques of lower and upper solutions for ODEs (C. De Coster and P. Habets) A number of related subjects dealing with properties of solutions, e.g., bifurcations, symmetries, nonlinear oscillations, are treated in other articles. This volume reflects rich and varied fields of research and will be a useful resource for mathematicians and graduate students in the ODE and PDE community.
This book illustrates the wide range of research subjects developed by the Italian research group in harmonic analysis, originally started by Alessandro Figa-Talamanca, to whom it is dedicated in the occasion of his retirement. In particular, it outlines some of the impressive ramifications of the mathematical developments that began when Figa-Talamanca brought the study of harmonic analysis to Italy; the research group that he nurtured has now expanded to cover many areas. Therefore the book is addressed not only to experts in harmonic analysis, summability of Fourier series and singular integrals, but also in potential theory, symmetric spaces, analysis and partial differential equations on Riemannian manifolds, analysis on graphs, trees, buildings and discrete groups, Lie groups and Lie algebras, and even in far-reaching applications as for instance cellular automata and signal processing (low-discrepancy sampling, Gaussian noise).
The book addresses mathematicians and physicists, including graduate students, who are interested in quantum dynamical systems and applications of operator algebras and ergodic theory. It is the only monograph on this topic. Although the authors assume a basic knowledge of operator algebras, they give precise definitions of the notions and in most cases complete proofs of the results which are used.
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
Developed in this book are several deep connections between time-frequency (Fourier/Gabor) analysis and time-scale (wavelet) analysis, emphasizing the powerful adaptive methods that emerge when separate techniques from each area are properly assembled in a larger context. While researchers at the forefront of these areas are well aware of the benefits of such a unified approach, there remains a knowledge gap in the larger community of practitioners about the precise strengths and limitations of Fourier/Gabor analysis versus wavelets. This book fills that gap by presenting the interface of time-frequency and time-scale methods as a rich area of work. "Foundations of Time-Frequency and Time-Scale Methods" will be suitable for applied mathematicians and engineers in signal/image processing and communication theory, as well as researchers and students in mathematical analysis, signal analysis, and mathematical physics.
This book is an introduction to level set methods and dynamic implicit surfaces. These are powerful techniques for analyzing and computing moving fronts in a variety of different settings. While it gives many examples of the utility of the methods to a diverse set of applications, it also gives complete numerical analysis and recipes, which will enable users to quickly apply the techniques to real problems. The book begins with a description of implicit surfaces and their basic properties, then devises the level set geometry and calculus toolbox, including the construction of signed distance functions. Part II adds dynamics to this static calculus. Topics include the level set equation itself, Hamilton-Jacobi equations, motion of a surface normal to itself, re-initialization to a signed distance function, extrapolation in the normal direction, the particle level set method and the motion of co-dimension two (and higher) objects. Part III is concerned with topics taken from the fields of Image Processing and Computer Vision. These include the restoration of images degraded by noise and blur, image segmentation with active contours (snakes), and reconstruction of surfaces from unorganized data points. Part IV is dedicated to Computational Physics. It begins with one phase compressible fluid dynamics, then two-phase compressible flow involving possibly different equations of state, detonation and deflagration waves, and solid/fluid structure interaction. Next it discusses incompressible fluid dynamics, including a computer graphics simulation of smoke, free surface flows, including a computer graphics simulation of water, and fully two-phase incompressible flow. Additional related topics include incompressible flames with applications to computer graphics and coupling a compressible and incompressible fluid. Finally, heat flow and Stefan problems are discussed. A student or researcher working in mathematics, computer graphics, science, or engineering interested in any dynamic moving front, which might change its topology or develop singularities, will find this book interesting and useful.
The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker's equations.
Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
This volume consists of eight papers on new advances in interpolation theory for matrix functions and completion theory for matrices and operators. Much emphasis is placed on different interpolation and completion problems when the interpolant is estimated in two different norms. The book also focusses on the study of the spectra of different completions of 2 x 2 block matrices when originally all entries are specified except the lower left corner. A third theme concerns two-sided tangential interpolation problems for real rational matrix functions, and also for the time varying case. A tangential moment problem is also analyzed. All papers deal with related problems of modern matrix analysis, operator theory, complex analysis and system theory and will appeal to a wide group of mathematicians and engineers. The material can be used for advance courses and seminars. Contents: Editorial Introduction ? D. Alpay/P. Loubaton: The tangential trigonometric moment problem on an interval and related topics ? M. Bakonyi/V.G. Kaftal/G. Weiss/H.J. Woerdeman: Maximum entropy and joint norm bounds for operator extensions ? J.A. Ball/I. Gohberg/M.A. Kaashoek: Bitangential interpolation for input-output operators of time varying systems: the discrete time case ? J.A. Ball/I. Gohberg/L. Rodman: Two-sided tangential interpolation of real rational matrix functions ? H. Du/C. Gu: On the spectra of operator completion problems ? C. Foias/A.E. Frazho/W.S. Li: The exact H2 estimate for the central H interpolant ? A.E. Frazho/s.M. Kherat: On mixed H2 - H tangential interpolation ? I. Gohberg/C.Gu: On a completion problem for matrices
The past decade has witnessed the rapid development of a new mathematical tool, called wavlet analysis, for analyzing complex signals. It has begin to play a serious role in applications ranging from communications to geophysics, and from simulations to image processing. Like Fourier analysis (of which it is a generalization), or musical notation, wavelet analysis provides a method for representing a set of complex phenomena in a simpler, more compact, and thus more efficient manner. This text introduces the ideas and methods of wavelet analysis, relates them to previously known methods in mathematics and engineering, and shows how to apply wavelet analysis to digital signal processing. It begins by describing the multiscale (sometimes called "fractal") nature of information in many aspects of thereal world; it then turns to the algebra and analysis of wavelet matrices, scaling and wavelet functions, and the corresponding analysis of square-integrable functins on a space. The discussion then turns from the continuous to the discrete and shows how a properly selected set of wavelets can be used to represent -- and even differentiate -- a wide range of signls efficiently and effectively. The last part of the book presents a wide variety of applications of wavelets to probllems in data compression and telecommunications.
This book combining wavelets and the world of the spectrum focuses on recent developments in wavelet theory, emphasizing fundamental and relatively timeless techniques that have a geometric and spectral-theoretic flavor. The exposition is clearly motivated and unfolds systematically, aided by numerous graphics.This self-contained book deals with important applications to signal processing, communications engineering, computer graphics algorithms, qubit algorithms and chaos theory, and is aimed at a broad readership of graduate students, practitioners, and researchers in applied mathematics and engineering. The book is also useful for other mathematicians with an interest in the interface between mathematics and communication theory.
Thisvolumeofthe Operator Theory: Advances and Applications series (OTAA) isthe ?rst volume of a new subseries. This subseries is dedicated to connections between the theory of linear operators and the mathematical theory of linear systems and is named Linear Operators and Linear Systems (LOLS).Asthe- isting subseries Advances in Partial Di?erential Equations (ADPE), the new s- series will continue the traditions of the OTAA series and keep the high quality of the volumes. The editors of the new subseries are: Daniel Alpay (Beer-Sheva, - rael), Joseph Ball (Blacksburg, Virginia, USA) and Andr e Ran (Amsterdam, The Netherlands). In the last 25-30 years, Mathematical System Theory developed in an ess- tial way. A large part of this development was connected with the use of the state space method. Let us mention for instance the "theory of H control". The state ? space method allowed to introduce in system theory the modern tools of matrix and operator theory. On the other hand the state space approach had an imp- tant impact on Algebra, Analysis and Operator Theory. In particular it allowed to solve explicitly some problems from interpolation theory, theory of convolution equations, inverse problems for canonical di?erential equations and their discrete analogs. All these directions are planned to be present in the subseries LOLS. The editors and the publisher are inviting authors to submit their manuscripts for publication in this subseries.
JeanVaillant L'oeuvre de Jean Leray est originale et profonde; ses theoremes et ses theories sont au coeur des recherches mathematiques actuelles: la beaute de chacun de ses travaux ne se divise pas. Son cours de Princeton, sous forme de notes en anglais (et d'une traduction en russe) en est une belle illustration: ce cours presente les equations aux derivees partielles a partir de la transformation de Laplace et du theoreme de Cauchy-Kowaleska et contient l'essentiel de nombreusesrecherchesmodernes. Lerayavaitpourbutderesoudreunprobleme, souvent d'origine mecanique ou physique - qui se pose, et non qu'on se pose -, de demontrer un theoreme; il construit alors son oeuvre de facon complete et essentiellement intrinseque. En fait, Leray construit une theorie dont l'extension tient a son origine naturelle, l'acuite, la perfection, la profondeur d'esprit de son auteur;enmemetempsildominelescalculs,qu'ilmeneavecplaisiretelegance: "Il n'y a pas de mathematiques sans calculs" disait-il. La science etait au centre de la vie de Jean Leray. Il s'inquietait de sa sauvegarde. Rappelons quelques phrases de ses textes de 1974: "D'ailleurs la science ne s'apprend pas: elle se comprend. Elle n'est pas lettre morte et les livres n'assurent pas sa perennite; elle est une pensee vivante. Pour la maitriser notre esprit doit, habilement guide, la redecouvrir de meme que notre corps a du revivre dans le sein mat- nel, toute l'evolution qui crea notre espece. Aussi n'y a-t-il qu'une facon ef?cace d'enseigner les sciences et les techniques: transmettre l'esprit de recherche.
This book concentrates on the topic of evaluation of Jacobians in some specific linear as well as nonlinear matrix transformations, in the real and complex cases, which are widely applied in the statistical, physical, engineering, biological and social sciences. It aims to develop some techniques systematically so that anyone with a little exposure to multivariable calculus can easily follow the steps and understand the various methods by which the Jacobians in complicated matrix transformations are evaluated. The material is developed slowly, with lots of worked examples, aimed at self-study. Some exercises are also given, at the end of each section.The book is a valuable reference for statisticians, engineers, physicists, econometricians, applied mathematicians and people working in many other areas. It can be used for a one-semester graduate level course on Jacobians and functions of matrix argument.
It is hard to imagine that another elementary analysis book would contain ma terial that in some vision could qualify as being new and needed for a discipline already abundantly endowed with literature. However, to understand analysis, be ginning with the undergraduate calculus student through the sophisticated math ematically maturing graduate student, the need for examples and exercises seems to be a constant ingredient to foster deeper mathematical understanding. To a talented mathematical student, many elementary concepts seem clear on their first encounter. However, it is the belief of the authors, this understanding can be deepened with a guided set of exercises leading from the so called "elementary" to the somewhat more "advanced" form. Insight is instilled into the material which can be drawn upon and implemented in later development. The first year graduate student attempting to enter into a research environment begins to search for some original unsolved area within the mathematical literature. It is hard for the student to imagine that in many circumstances the advanced mathematical formulations of sophisticated problems require attacks that draw upon, what might be termed elementary techniques. However, if a student has been guided through a serious repertoire of examples and exercises, he/she should certainly see connections whenever they are encountered."
The approach of layer-damping coordinate transformations to treat singularly perturbed equations is a relatively new, and fast growing area in the field of applied mathematics. This monograph aims to present a clear, concise, and easily understandable description of the qualitative properties of solutions to singularly perturbed problems as well as of the essential elements, methods and codes of the technology adjusted to numerical solutions of equations with singularities by applying layer-damping coordinate transformations and corresponding layer-resolving grids. The first part of the book deals with an analytical study of estimates of the solutions and their derivatives in layers of singularities as well as suitable techniques for obtaining results. In the second part, a technique for building the coordinate transformations eliminating boundary and interior layers, is presented. Numerical algorithms based on the technique which is developed for generating layer-damping coordinate transformations and their corresponding layer-resolving meshes are presented in the final part of this volume. This book will be of value and interest to researchers in computational and applied mathematics.
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and probability theory. In the 1960's, Rota was motivated by problems in fluctuation theory to study some operator identities of Glen Baxter (see [7]). Together with other problems in probability theory, this led Rota to study combinatorics. His series of papers, "On the foundations of combi natorial theory", led to a fundamental re-evaluation of the subject. Later, in the 1990's, Rota returned to some of the problems in analysis and probability theory which motivated his work in combinatorics. This was his intention all along, and his early death robbed mathematics of his unique perspective on linkages between the discrete and the continuous. Glimpses of his new research programs can be found in [2,3,6,9,10].
This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs). Phase space analysis methods, also known as microlocal analysis, have continued to yield striking results over the past years and are now one of the main tools of investigation of PDEs. Their role in many applications to physics, including quantum and spectral theory, is equally important. Key topics addressed in this volume include: *general theory of pseudodifferential operators *Hardy-type inequalities *linear and non-linear hyperbolic equations and systems *Schroedinger equations *water-wave equations *Euler-Poisson systems *Navier-Stokes equations *heat and parabolic equations Various levels of graduate students, along with researchers in PDEs and related fields, will find this book to be an excellent resource. Contributors T. Alazard P.I. Naumkin J.-M. Bony F. Nicola N. Burq T. Nishitani C. Cazacu T. Okaji J.-Y. Chemin M. Paicu E. Cordero A. Parmeggiani R. Danchin V. Petkov I. Gallagher M. Reissig T. Gramchev L. Robbiano N. Hayashi L. Rodino J. Huang M. Ruzhanky D. Lannes J.-C. Saut F. Linares N. Visciglia P.B. Mucha P. Zhang C. Mullaert E. Zuazua T. Narazaki C. Zuily
Multivariate polynomials are a main tool in approximation. The book begins with an introduction to the general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book gives the first comprehensive introduction to the recently developped theory of generalized hyperinterpolation. As an application, the book gives a quick introduction to tomography. Several parts of the book are based on rotation principles, which are presented in the beginning of the book, together with all other basic facts needed. |
You may like...
Fault Diagnosis for Linear Discrete…
Maiying Zhong, Ting Xue, …
Hardcover
R4,301
Discovery Miles 43 010
Networked and Distributed Predictive…
Panagiotis D. Christofides, Jinfeng Liu, …
Hardcover
R2,672
Discovery Miles 26 720
Machine Vision and Navigation
Oleg Sergiyenko, Wendy Flores-Fuentes, …
Hardcover
R7,142
Discovery Miles 71 420
Sliding Mode Control - The Delta-Sigma…
Hebertt Sira-Ramirez
Hardcover
Intelligent Control Based on Flexible…
M. Teshnehlab, Watanabe Kyoko
Hardcover
R2,786
Discovery Miles 27 860
Fractional-order Modeling of Nuclear…
Vishwesh Vyawahare, Paluri S. V. Nataraj
Hardcover
R2,661
Discovery Miles 26 610
Biological Neural Networks: Hierarchical…
Konstantin V. Baev
Hardcover
R4,177
Discovery Miles 41 770
|