![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrodinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. "
Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations. When solving such problems, in many cases it is fairly easy to obtain the Laplace transform, while it is very demanding to determine the inverse Laplace transform which is the solution of a given problem. Sometimes, after some difficult contour integration we may find that a series solution results, but this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods which are available at the current time. Computer programs are included for those methods which perform consistently well on a wide range of Laplace transforms.
In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called Nonstandard analysis'. Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
The book contains some of the most important results on the analysis of polynomials and their derivatives. Besides the fundamental results which are treated with their proofs, the book also provides an account of the most recent developments concerning extremal properties of polynomials and their derivatives in various metrics with an extensive analysis of inequalities for trigonometric sums and algebraic polynomials, as well as their zeros. The final chapter provides some selected applications of polynomials in approximation theory and computer aided geometric design (CAGD). One can also find in this book several new research problems and conjectures with sufficient information concerning the results obtained to date towards the investigation of their solution.
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
1 More than thirty years after its discovery by Abraham Robinson, the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum, as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians."
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.
The classical optimal control theory deals with the determination of an optimal control that optimizes the criterion subjects to the dynamic constraint expressing the evolution of the system state under the influence of control variables. If this is extended to the case of multiple controllers (also called players) with different and sometimes conflicting optimization criteria (payoff function) it is possible to begin to explore differential games. Zero-sum differential games, also called differential games of pursuit, constitute the most developed part of differential games and are rigorously investigated. In this book, the full theory of differential games of pursuit with complete and partial information is developed. Numerous concrete pursuit-evasion games are solved ("life-line" games, simple pursuit games, etc.), and new time-consistent optimality principles in the n-person differential game theory are introduced and investigated.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism, plasma dynamics and control theory are given using both invariant and index notation. The prerequisites required are solid undergraduate courses in linear algebra and advanced calculus.
From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.
In recent years, there has been an upsurge of interest in using techniques drawn from probability to tackle problems in analysis. These applications arise in subjects such as potential theory, harmonic analysis, singular integrals, and the study of analytic functions. This book presents a modern survey of these methods at the level of a beginning Ph.D. student. Highlights of this book include the construction of the Martin boundary, probabilistic proofs of the boundary Harnack principle, Dahlberg's theorem, a probabilistic proof of Riesz' theorem on the Hilbert transform, and Makarov's theorems on the support of harmonic measure. The author assumes that a reader has some background in basic real analysis, but the book includes proofs of all the results from probability theory and advanced analysis required. Each chapter concludes with exercises ranging from the routine to the difficult. In addition, there are included discussions of open problems and further avenues of research.
This book provides an introduction to matrix theory and aims to provide a clear and concise exposition of the basic ideas, results and techniques in the subject. Complete proofs are given, and no knowledge beyond high school mathematics is necessary. The book includes many examples, applications and exercises for the reader, so that it can used both by students interested in theory and those who are mainly interested in learning the techniques.
This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Almost a century ago, harmonic analysis entered a (still continuing) Golden Age, with the emergence of many great masters throughout Europe. They created a wealth of profound analytic methods, to be successfully exploited and further developed by succeeding generations. This flourishing of harmonic analysis is today as lively as ever, as the papers presented here demonstrate. In addition to its own ongoing internal development and its basic role in other areas of mathematics, physics and chemistry, financial analysis, medicine, and biological signal processing, harmonic analysis has made fundamental contributions to essentially all twentieth century technology-based human endeavours, including telephone, radio, television, radar, sonar, satellite communications, medical imaging, the Internet, and multimedia. This ubiquitous nature of the subject is amply illustrated. The book not only promotes the infusion of new mathematical tools into applied harmonic analysis, but also to fuel the development of applied mathematics by providing opportunities for young engineers, mathematicians and other scientists to learn more about problem areas in today's technology that might benefit from new mathematical insights.
This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developments of the '70s when the use of computers made advanced research possible, to current work on this subject in China and elsewhere. The five chapters treat vortex methods for the Euler and Navier-Stokes equations; mathematical theory for incompressible flows; convergence of vortex methods for the Euler equations; convergence of viscosity splitting; and convergence of the random vortex method. Audience: This volume will be of interest to researchers and graduate students of applied mathematics, scientists in fluid dynamics, and aviation engineers.
Most topics dealt with here deal with complex analysis of both one and several complex variables. Several contributions come from elasticity theory. Areas covered include the theory of p-adic analysis, mappings of bounded mean oscillations, quasiconformal mappings of Klein surfaces, complex dynamics of inverse functions of rational or transcendental entire functions, the nonlinear Riemann-Hilbert problem for analytic functions with nonsmooth target manifolds, the Carleman-Bers-Vekua system, the logarithmic derivative of meromorphic functions, G-lines, computing the number of points in an arbitrary finite semi-algebraic subset, linear differential operators, explicit solution of first and second order systems in bounded domains degenerating at the boundary, the Cauchy-Pompeiu representation in L2 space, strongly singular operators of Calderon-Zygmund type, quadrature solutions to initial and boundary-value problems, the Dirichlet problem, operator theory, tomography, elastic displacements and stresses, quantum chaos, and periodic wavelets.
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.
As is known, the book named "Multivariate spline functions and their applications" has been published by the Science Press in 1994. This book is an English edition based on the original book mentioned 1 above with many changes, including that of the structure of a cubic - interpolation in n-dimensional spline spaces, and more detail on triangu- lations have been added in this book. Special cases of multivariate spline functions (such as step functions, polygonal functions, and piecewise polynomials) have been examined math- ematically for a long time. I. J. Schoenberg (Contribution to the problem of application of equidistant data by analytic functions, Quart. Appl. Math., 4(1946), 45 - 99; 112 - 141) and W. Quade & L. Collatz (Zur Interpo- lations theories der reellen periodischen function, Press. Akad. Wiss. (PhysMath. KL), 30(1938), 383- 429) systematically established the the- ory of the spline functions. W. Quade & L. Collatz mainly discussed the periodic functions, while I. J. Schoenberg's work was systematic and com- plete. I. J. Schoenberg outlined three viewpoints for studing univariate splines: Fourier transformations, truncated polynomials and Taylor ex- pansions. Based on the first two viewpoints, I. J. Schoenberg deduced the B-spline function and its basic properties, especially the basis func- tions. Based on the latter viewpoint, he represented the spline functions in terms of truncated polynomials. These viewpoints and methods had significantly effected on the development of the spline functions.
This book presents applications of Newton-like and other similar methods to solve abstract functional equations involving fractional derivatives. It focuses on Banach space-valued functions of a real domain - studied for the first time in the literature. Various issues related to the modeling and analysis of fractional order systems continue to grow in popularity, and the book provides a deeper and more formal analysis of selected issues that are relevant to many areas - including decision-making, complex processes, systems modeling and control - and deeply embedded in the fields of engineering, computer science, physics, economics, and the social and life sciences. The book offers a valuable resource for researchers and graduate students, and can also be used as a textbook for seminars on the above-mentioned subjects. All chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references.
It isn't that they can't see the solution. It is Approach your problems from the right end and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father The Hermit Gad in Crane Feathers' in R. Brown The point of a Pin'. van GuIik's The Chinese Maze Murders. Growing speciaIization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics." |
You may like...
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R3,164
Discovery Miles 31 640
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Calculus, International Metric Edition
Bruce Edwards, Ron Larson
Paperback
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
|