![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. 25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146]."
This book aims at restructuring some fundamentals in measure and integration theory. It centers around the ubiquitous task to produce appropriate contents and measures from more primitive data like elementary contents and elementary integrals. It develops the new approach started around 1970 by Topsoe and others into a systematic theory. The theory is much more powerful than the traditional means and has striking implications all over measure theory and beyond.
While there are many excellent books available on fundamental and applied electromagnetics, most introduce operator concepts in an ad hoc manner, and few discuss the subject within the general framework of operator theory. This is in contrast to quantum theory, where the use of operators and concepts from functional analysis is common. However, casting electromagnetic problems in terms of operator theory produces useful insights into the mathematical properties and physical characteristics of solutions. For instance, the commonly used modal expansion of fields in waveguides are immediately justified upon identifying the differential operators as being of the appropriate Sturm-Liouville type. As another example, existence, uniqueness and solvability of integral formulations can often be settled by appealing to the theory of Fredholm operators. Many other examples that illustrate the value of abstracting problems to an operator level are provided. Although the book focuses on mathematical fundamentals, it is written from the perspective of engineers and applied scientists working in electromagnetics. The book begins with a review of electromagnetic theory, including a discussion of singular integral operators commonly encountered in applications. It then turns to a self-contained introduction to operator theory, including basic functional analysis, linear operators, Green¿s functions and Green¿s operators, spectral theory, and Sturm-Liouville operators. The discussion is at an introductory mathematical level, presenting definitions and theorems, as well as proofs of the theorems when these are particularly simple or enlightening. The tools developed in this first part of the book are then applied to problems in classical electromagnetic theory: boundary-value problems and potential theory, transmission lines, waves in layered media, scattering problems in waveguides, and electromagnetic cavities.
This new edition is intended for third and fourth year undergraduates in Engineering, Physics, Mathematics, and the Applied Sciences, and can serve as a springboard for further work in Continuum Mechanics or General Relativity. Starting from a basic knowledge of calculus and matrix algebra, together with fundamental ideas from mechanics and geometry, the text gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics. The mathematics of tensor analysis is introduced in well-separated stages: the concept of a tensor as an operator; the representation of a tensor in terms of its Cartesian components; the components of a tensor relative to a general basis, tensor notation, and finally, tensor calculus. The physical interpretation and application of vectors and tensors are stressed throughout. Though concise, the text is written in an informal, non-intimidating style enhanced by worked-out problems and a meaningful variety of exercises. The new edition includes more exercises, especially at the end of chapter IV. Furthermore, the author has appended a section on Differential Geometry, the essential mathematical tool in the study of the 2-dimensional structural shells and 4-dimensional general relativity.
The aim of this monograph is to give a unified account fo the classical topics in fixed point theory that lie on the border-line of topology and non-linear functional analysis, emphasizing the topological developments related to the Leray-Schauder theory. The first part of this book is based on "Fixed Point Theory I" which was published by PWN, Warsaw in 1982. The second part follows the outline conceived by Andrzej Granas and the late James Dugunji. The completionof this work has been awaited for many years by researchers in this area. "If the authors do equally well with the second volume they will have produced the best monograph in this particular field."Math Reviews
Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrodinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. "
Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations. When solving such problems, in many cases it is fairly easy to obtain the Laplace transform, while it is very demanding to determine the inverse Laplace transform which is the solution of a given problem. Sometimes, after some difficult contour integration we may find that a series solution results, but this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods which are available at the current time. Computer programs are included for those methods which perform consistently well on a wide range of Laplace transforms.
In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called Nonstandard analysis'. Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
The book contains some of the most important results on the analysis of polynomials and their derivatives. Besides the fundamental results which are treated with their proofs, the book also provides an account of the most recent developments concerning extremal properties of polynomials and their derivatives in various metrics with an extensive analysis of inequalities for trigonometric sums and algebraic polynomials, as well as their zeros. The final chapter provides some selected applications of polynomials in approximation theory and computer aided geometric design (CAGD). One can also find in this book several new research problems and conjectures with sufficient information concerning the results obtained to date towards the investigation of their solution.
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
1 More than thirty years after its discovery by Abraham Robinson, the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum, as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians."
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
The classical optimal control theory deals with the determination of an optimal control that optimizes the criterion subjects to the dynamic constraint expressing the evolution of the system state under the influence of control variables. If this is extended to the case of multiple controllers (also called players) with different and sometimes conflicting optimization criteria (payoff function) it is possible to begin to explore differential games. Zero-sum differential games, also called differential games of pursuit, constitute the most developed part of differential games and are rigorously investigated. In this book, the full theory of differential games of pursuit with complete and partial information is developed. Numerous concrete pursuit-evasion games are solved ("life-line" games, simple pursuit games, etc.), and new time-consistent optimality principles in the n-person differential game theory are introduced and investigated.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism, plasma dynamics and control theory are given using both invariant and index notation. The prerequisites required are solid undergraduate courses in linear algebra and advanced calculus.
From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.
In recent years, there has been an upsurge of interest in using techniques drawn from probability to tackle problems in analysis. These applications arise in subjects such as potential theory, harmonic analysis, singular integrals, and the study of analytic functions. This book presents a modern survey of these methods at the level of a beginning Ph.D. student. Highlights of this book include the construction of the Martin boundary, probabilistic proofs of the boundary Harnack principle, Dahlberg's theorem, a probabilistic proof of Riesz' theorem on the Hilbert transform, and Makarov's theorems on the support of harmonic measure. The author assumes that a reader has some background in basic real analysis, but the book includes proofs of all the results from probability theory and advanced analysis required. Each chapter concludes with exercises ranging from the routine to the difficult. In addition, there are included discussions of open problems and further avenues of research.
This book provides an introduction to matrix theory and aims to provide a clear and concise exposition of the basic ideas, results and techniques in the subject. Complete proofs are given, and no knowledge beyond high school mathematics is necessary. The book includes many examples, applications and exercises for the reader, so that it can used both by students interested in theory and those who are mainly interested in learning the techniques.
This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
Almost a century ago, harmonic analysis entered a (still continuing) Golden Age, with the emergence of many great masters throughout Europe. They created a wealth of profound analytic methods, to be successfully exploited and further developed by succeeding generations. This flourishing of harmonic analysis is today as lively as ever, as the papers presented here demonstrate. In addition to its own ongoing internal development and its basic role in other areas of mathematics, physics and chemistry, financial analysis, medicine, and biological signal processing, harmonic analysis has made fundamental contributions to essentially all twentieth century technology-based human endeavours, including telephone, radio, television, radar, sonar, satellite communications, medical imaging, the Internet, and multimedia. This ubiquitous nature of the subject is amply illustrated. The book not only promotes the infusion of new mathematical tools into applied harmonic analysis, but also to fuel the development of applied mathematics by providing opportunities for young engineers, mathematicians and other scientists to learn more about problem areas in today's technology that might benefit from new mathematical insights.
This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developments of the '70s when the use of computers made advanced research possible, to current work on this subject in China and elsewhere. The five chapters treat vortex methods for the Euler and Navier-Stokes equations; mathematical theory for incompressible flows; convergence of vortex methods for the Euler equations; convergence of viscosity splitting; and convergence of the random vortex method. Audience: This volume will be of interest to researchers and graduate students of applied mathematics, scientists in fluid dynamics, and aviation engineers. |
You may like...
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R3,164
Discovery Miles 31 640
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
|