Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Exponential Fitting is a procedure for an efficient numerical approach of functions consisting of weighted sums of exponential, trigonometric or hyperbolic functions with slowly varying weight functions. This book is the first one devoted to this subject. Operations on the functions described above like numerical differentiation, quadrature, interpolation or solving ordinary differential equations whose solution is of this type, are of real interest nowadays in many phenomena as oscillations, vibrations, rotations, or wave propagation. The authors studied the field for many years and contributed to it. Since the total number of papers accumulated so far in this field exceeds 200 and the fact that these papers are spread over journals with various profiles (such as applied mathematics, computer science, computational physics and chemistry) it was time to compact and to systematically present this vast material. In this book, a series of aspects is covered, ranging from the theory of the procedure up to direct applications and sometimes including ready to use programs. The book can also be used as a textbook for graduate students. It comes with a complimentary CD Rom.
This book begins with an introductory chapter summarizing the history of fluid mechanics. It then moves on to the essential mathematics and physics needed to understand and work in fluid mechanics. Analytical treatments are based on the Navier-Stokes equations.
"Recent Advances in Harmonic Analysis and Applications" features selected contributions from the AMS conference which took place at Georgia Southern University, Statesboro in 2011 in honor of Professor Konstantin Oskolkov's 65th birthday. The contributions are based on two special sessions, namely "Harmonic Analysis and Applications" and "Sparse Data Representations and Applications." Topics covered range from Banach space geometry to classical harmonic analysis and partial differential equations.Survey and expository articles by leading experts in their corresponding fields are included, and the volume also features selected high quality papers exploring new results and trends in Muckenhoupt-Sawyer theory, orthogonal polynomials, trigonometric series, approximation theory, Bellman functions and applications in differential equations. Graduate students and researchers in analysis will be particularly interested in the articles which emphasize remarkable connections between analysis and analytic number theory. The readers will learn about recent mathematical developments and directions for future work in the unexpected and surprising interaction between abstract problems in additive number theory and experimentally discovered optical phenomena in physics. This book will be useful for number theorists, harmonic analysts, algorithmists in multi-dimensional signal processing and experts in physics and partial differential equations. "
This book features challenging problems of classical analysis that invite the reader to explore a host of strategies and tools used for solving problems of modern topics in real analysis. This volume offers an unusual collection of problems - many of them original - specializing in three topics of mathematical analysis: limits, series, and fractional part integrals. The work is divided into three parts, each containing a chapter dealing with a particular problem type as well as a very short section of hints to select problems. The first chapter collects problems on limits of special sequences and Riemann integrals; the second chapter focuses on the calculation of fractional part integrals with a special section called 'Quickies' which contains problems that have had unexpected succinct solutions. The final chapter offers the reader an assortment of problems with a flavor towards the computational aspects of infinite series and special products, many of which are new to the literature. Each chapter contains a section of difficult problems which are motivated by other problems in the book. These 'Open Problems' may be considered research projects for students who are studying advanced calculus, and which are intended to stimulate creativity and the discovery of new and original methods for proving known results and establishing new ones. This stimulating collection of problems is intended for undergraduate students with a strong background in analysis; graduate students in mathematics, physics, and engineering; researchers; and anyone who works on topics at the crossroad between pure and applied mathematics. Moreover, the level of problems is appropriate for students involved in the Putnam competition and other high level mathematical contests.
This volume is a result of two international workshops, namely the Second Annual Workshop on Inverse Problems and the Workshop on Large-Scale Modeling, held jointly in Sunne, Sweden from May 1-6 2012. The subject of the inverse problems workshop was to present new analytical developments and new numerical methods for solutions of inverse problems. The objective of the large-scale modeling workshop was to identify large-scale problems arising in various fields of science and technology and covering all possible applications, with a particular focus on urgent problems in theoretical and applied electromagnetics. The workshops brought together scholars, professionals, mathematicians, and programmers and specialists working in large-scale modeling problems. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.
The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.
The Mathieu series is a functional series introduced by Emile Leonard Mathieu for the purposes of his research on the elasticity of solid bodies. Bounds for this series are needed for solving biharmonic equations in a rectangular domain. In addition to Tomovski and his coauthors, Pogany, Cerone, H. M. Srivastava, J. Choi, etc. are some of the known authors who published results concerning the Mathieu series, its generalizations and their alternating variants. Applications of these results are given in classical, harmonic and numerical analysis, analytical number theory, special functions, mathematical physics, probability, quantum field theory, quantum physics, etc. Integral representations, analytical inequalities, asymptotic expansions and behaviors of some classes of Mathieu series are presented in this book. A systematic study of probability density functions and probability distributions associated with the Mathieu series, its generalizations and Planck's distribution is also presented. The book is addressed at graduate and PhD students and researchers in mathematics and physics who are interested in special functions, inequalities and probability distributions.
This volume contains research articles from the field of Nonlinear Differential Equa tions which result from the "Workshop on Nonlinear Analysis and Applications" held in Bergamo on July 9 to 13, 200l. This workshop was the third edition of a meeting which first took place in Campinas in 1996 and was founded in part upon scientific cooperation, already well initiated, between some participants, on specific problems in Nonlinear Analysis, and in part upon the whish to extend such cooperation to other researchers and to other topics. The scientific collaboration between Italy and Brazil is not new; it dates back at least to the thirties, and includes, among others, the name of Luigi Fantappie, just to mention only one of the earliest Italians that developed part of their scien tific activity in Brazil. If the first workshop had mainly an informal character, the second, which took place in 1998 again in Campinas, already had the structure and the breath of a true international congress. At this point it was the Italians turn to organize the third meeting. The main purpose of the conference was to provide a forum for the discussion of recent work and modern trends in various fields of Nonlinear Analysis. About 130 researchers coming from 17 countries attended the conference."
This book contains a selection of carefully refereed research papers, most of which were presented at the 14th International Workshop on Operator Theory and its Applications (IWOTA) held at Cagliari, Italy (June 24-27, 2003). The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. Included are papers on the structure of operators, spectral theory of differential operators, theory of pseudo-differential operators and Fourier integral operators, numerical methods for solving nonlinear integral equations, singular integral equations, and Toeplitz systems. Other main topics covered are inverse problems for canonical systems, factorization methods, metric constrained interpolation, mathematical system theory, and elements of multivariable operator theory. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
This book presents the reader with a comprehensive overview of the major findings of the recent research on the illusion of linearity. It discusses: how the illusion of linearity appears in diverse domains of mathematics and science; what are the crucial psychological, mathematical, and educational factors being responsible for the occurrence and persistence of the phenomenon; and how the illusion of linearity can be remedied.
Symbolic Integration I is destined to become the standard reference work in the field. Manuel Bronstein is a leading expert on this topic and his book is the first to treat the subject both comprehensively and in sufficient detail - incorporating new results along the way. The book addresses mathematicians and computer scientists interested in symbolic computation, developers and programmers of computer algebra systems as well as users of symbolic integration methods. Many algorithms are given in pseudocode ready for immediate implementation, making the book equally suitable as a textbook for lecture courses on symbolic integration. This second edition offers a new chapter on parallel integration, a number of other improvements and a couple of additional exercises. From the reviews of the first edition: ..". The writing is excellent, and the author provides a clear and coherent treatment of the problem of symbolic integration of transcendental functions " F. Winkler, Computing Reviews 1997 "
The aim of this volume is to present the state of the art in the mathematical analysis of transport and mixing phenomena in fluids and associated problems. It supplements current literature on the subject with a unique blend of contributions that touch upon both theoretical as well as modeling questions and showcase a variety of techniques, from the analysis of partial differential equations, to harmonic analysis, to computational methods. The volume contains the expanded notes from lectures by leading experts in the field at the Summer School "Transport, Fluids, and Mixing" held in Levico Terme, Italy, July 19-24, 2015.
During the last several years, frames have become increasingly popular; they have appeared in a large number of applications, and several concrete constructions of frames of various types have been presented. Most of these constructions were based on quite direct methods rather than the classical sufficient conditions for obtaining a frame. Consequently, there is a need for an updated book on frames, which moves the focus from the classical approach to a more constructive one. Based on a streamlined presentation of the author's previous work, An Introduction to Frames and Riesz Bases, this new textbook fills a gap in the literature, developing frame theory as part of a dialogue between mathematicians and engineers. Newly added sections on applications will help mathematically oriented readers to see where frames are used in practice and engineers to discover the mathematical background for applications in their field. Key features and topics: * Results presented in an accessible way for graduate students, pure and applied mathematicians as well as engineers. * An introductory chapter provides basic results in finite-dimensional vector spaces, enabling readers with a basic knowledge of linear algebra to understand the idea behind frames without the technical complications in infinite-dimensional spaces. * Extensive exercises for use in theoretical graduate courses on bases and frames, or applications-oriented courses focusing on either Gabor analysis or wavelets. * Detailed description of frames with full proofs, an examination of the relationship between frames and Riesz bases, and a discussion of various ways to construct frames. * Content split naturally intotwo parts: The first part describes the theory on an abstract level, whereas the second part deals with explicit constructions of frames with applications and connections to time-frequency analysis, Gabor analysis, and wavelets. Frames and Bases: An Introductory Course will be an excellent textbook for graduate students as well as a good reference for researchers working in pure and applied mathematics, mathematical physics, and engineering. Practitioners working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find the book a useful self-study resource.
This volume presents a collection of selected papers by the prominent Brazilian mathematician Djairo G. de Figueiredo, who has made significant contributions in the area of Differential Equations and Analysis. His work has been highly influential as a challenge and inspiration to young mathematicians as well as in development of the general area of analysis in his home country of Brazil. In addition to a large body of research covering a variety of areas including geometry of Banach spaces, monotone operators, nonlinear elliptic problems and variational methods applied to differential equations, de Figueiredo is known for his many monographs and books. Among others, this book offers a sample of the work of Djairo, as he is commonly addressed, advancing the study of superlinear elliptic problems (both scalar and system cases), including questions on critical Sobolev exponents and maximum principles for non-cooperative elliptic systems in Hamiltonian form.
This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.
And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum?eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in * macrocosmos (the universe) and * microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ?eld theory, which is a fascinating topic in modern mathematics and physics.
For two-semester courses in Calculus. Calculus for Business, Economics, Life Sciences, and Social Sciences, 14th Edition offers more built-in guidance than any other text in its field - with special emphasis on applications and prerequisite skills - and a host of student-friendly features to help students catch up or learn on their own. The text's emphasis on helping students "get the idea" is enhanced in the new edition by a design refresh and updated data and applications.
Variational and boundary integral equation techniques are two of the most useful methods for solving time-dependent problems described by systems of equations of the form 2 ? u = Au, 2 't 2 where u = u(x, t) is a vector-valued function, x is a point in a domain inR or 3 R, and A is a linear elliptic di?erential operator. To facilitate a better und- standing of these two types of methods, below we propose to illustrate their mechanisms in action on a speci?c mathematical model rather than in a more impersonal abstract setting. For this purpose, we have chosen the hyperbolic system of partial di?erential equations governing the nonstationary bending of elastic plates with transverse shear deformation. The reason for our choice is twofold. On the one hand, in a certain sense this is a hybrid system, c- sistingofthreeequationsforthreeunknownfunctionsinonlytwoindependent variables, which makes it more unusual and thereby more interesting to the analyst than other systems arising in solid mechanics. On the other hand, this particular plate model has received very little attention compared to the so-called classical one, based on Kirchho? s simplifying hypotheses, although, as acknowledged by practitioners, it represents a substantial re?nement of the latter and therefore needs a rigorous discussion of the existence, uniqueness, and continuous dependence of its solution on the data before any construction of numerical approximation algorithms can be contemplated."
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
Features Discusses real-world problems, theory, and applications. Covers new developments and advances in the various areas of nonlinear dynamics, signal processing and chaos. Suitable to teach Master's and/or Ph.D. level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences. |
You may like...
Nonlinear Higher Order Differential And…
Feliz Manuel Minhos, Robert De Sousa
Hardcover
R2,488
Discovery Miles 24 880
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Asymptotic, Algebraic and Geometric…
Frank Nijhoff, Yang Shi, …
Hardcover
R4,245
Discovery Miles 42 450
Finer Thermodynamic Formalism - Distance…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,106
Discovery Miles 41 060
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,452
Discovery Miles 24 520
|