![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of n that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939-2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
Nonsmooth Analysis is a relatively recent area of mathematical
analysis. The literature about this subject consists mainly in
research papers and books. The purpose of this book is to provide a
handbook for undergraduate and graduate students of mathematicsthat
introduce this interesting area in detail.
This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics. The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$. Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the "best constant" in the Antonov stability estimate is attained. The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively. Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory. A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics.
The main subject of this introductory book is simple random walk on the integer lattice, with special attention to the two-dimensional case. This fascinating mathematical object is the point of departure for an intuitive and richly illustrated tour of related topics at the active edge of research. It starts with three different proofs of the recurrence of the two-dimensional walk, via direct combinatorial arguments, electrical networks, and Lyapunov functions. After reviewing some relevant potential-theoretic tools, the reader is guided toward the relatively new topic of random interlacements - which can be viewed as a 'canonical soup' of nearest-neighbour loops through infinity - again with emphasis on two dimensions. On the way, readers will visit conditioned simple random walks - which are the 'noodles' in the soup - and also discover how Poisson processes of infinite objects are constructed and review the recently introduced method of soft local times. Each chapter ends with many exercises, making it suitable for courses and independent study.
Formal analysis is the study of formal power series, formal Laurent series, formal root series, and other formal series or formal functionals. This book is the first comprehensive presentation of the topic that systematically introduces formal analysis, including its algebraic, analytic, and topological structure, along with various applications.
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere.
This proceedings volume gathers together selected works from the 2018 "Asymptotic, Algebraic and Geometric Aspects of Integrable Systems" workshop that was held at TSIMF Yau Mathematical Sciences Center in Sanya, China, honoring Nalini Joshi on her 60th birthday. The papers cover recent advances in asymptotic, algebraic and geometric methods in the study of discrete integrable systems. The workshop brought together experts from fields such as asymptotic analysis, representation theory and geometry, creating a platform to exchange current methods, results and novel ideas. This volume's articles reflect these exchanges and can be of special interest to a diverse group of researchers and graduate students interested in learning about current results, new approaches and trends in mathematical physics, in particular those relevant to discrete integrable systems.
The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganes, Spain, from July 3 to July 6, 2018.These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields.In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.
This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen's formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub's expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
The field of fluid mechanics is vast and has numerous and diverse applications. Presented papers from the 11th International Conference on Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow are contained in this book and cover a wide range of topics, including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. Innovation in fluid-structure approaches including emerging applications as energy harvesting systems, studies of turbulent flows at high Reynold number, or subsonic and hypersonic flows are also among the topics covered. The emphasis placed on multiphase flow in the included research works is due to the fact that fluid dynamics processes in nature are predominantly multi-phased, i.e. involving more than one phase of a component such as liquid, gas or plasma. The range of related problems of interest is vast: astrophysics, biology, geophysics, atmospheric processes, and a large variety of engineering applications. Multiphase fluid dynamics are generating a great deal interest, leading to many notable advances in experimental, analytical, and numerical studies in this area. While progress is continuing in all three categories, advances in numerical solutions are likely the most conspicuous, owing to the continuing improvements in computer power and the software tools available to researchers. Progress in numerical methods has not only allowed for the solution of many practical problems but also helped to improve our understanding of the physics involved. Many unresolved issues are inherent in the very definition of multiphase flow, where it is necessary to consider coupled processes on multiple scales, as well as the interplay of a wide variety of relevant physical phenomena.
This book provides the main results and ideas in the theories of completely bounded maps, operator spaces, and operator algebras, along with some of their main applications. It requires only a basic background in functional analysis to read through the book. The descriptions and discussions of the topics are self-explained. It is appropriate for graduate students new to the subject and the field. The book starts with the basic representation theorems for abstract operator spaces and their mappings, followed by a discussion of tensor products and the analogue of Grothendieck's approximation property. Next, the operator space analogues of the nuclear, integral, and absolutely summing mappings are discussed. In what is perhaps the deepest part of the book, the authors present the remarkable ""non-classical"" phenomena that occur when one considers local reflexivity and exactness for operator spaces. This is an area of great beauty and depth, and it represents one of the triumphs of the subject. In the final part of the book, the authors consider applications to non-commutative harmonic analysis and non-self-adjoint operator algebra theory. Operator space theory provides a synthesis of Banach space theory with the non-commuting variables of operator algebra theory, and it has led to exciting new approaches in both disciplines. This book is an indispensable introduction to the theory of operator spaces.
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
This edited volume aims at giving an overview of recent advances in the theory and applications of Partial Differential Equations and energy functionals related to the fractional Laplacian operator as well as to more general integro-differential operators with singular kernel of fractional differentiability. After being investigated firstly in Potential Theory and Harmonic Analysis, fractional operators defined via singular integral are nowadays riveting great attention in different research fields related to Partial Differential Equations with nonlocal terms, since they naturally arise in many different contexts, as for instance, dislocations in crystals, nonlocal minimal surfaces, the obstacle problem, the fractional Yamabe problem, and many others. Much progress has been made during the last years, and this edited volume presents a valuable update to a wide community interested in these topics. List of contributors Claudia Bucur, Zhen-Qing Chen, Francesca Da Lio, Donatella Danielli, Serena Dipierro, Rupert L. Frank, Maria del Mar Gonzalez, Moritz Kassmann, Tuomo Kuusi, Giuseppe Mingione, Giovanni Molica Bisci, Stefania Patrizi, Xavier Ros-Oton, Sandro Salsa, Yannick Sire, Enrico Valdinoci, Xicheng Zhang.
Nonlinear Approaches in Engineering Applications 2 focuses on the application of nonlinear approaches to different engineering and science problems. The selection of the topics for this book is based on the best papers presented in the ASME 2010 and 2011 in the tracks of Dynamic Systems and Control, Optimal Approaches in Nonlinear Dynamics and Acoustics, both of which were organized by the editors. For each selected topic, detailed concept development, derivations and relevant knowledge are provided for the convenience of the readers. The topics that have been selected are of great interest in the fields of engineering and physics and this book is designed to appeal to engineers and researchers working in a broad range of practical topics and approaches.
Progress in mathematics is based on a thorough understanding of the mathematical objects under consideration, and yet many textbooks and monographs proceed to discuss general statements and assume that the reader can and will provide the mathematical infrastructure of examples and counterexamples. This book makes a deliberate effort to correct this situation: it is a collection of examples. The following table of contents describes its breadth and reveals the underlying motivation--differential geometry--in its many facets: Riemannian, symplectic, K*adahler, hyperK*adahler, as well as complex and quaternionic.
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis. Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers examples of functions whose existence cannot be established without the help of additional set-theoretical axioms and demonstrates that their existence follows from certain set-theoretical hypotheses, such as the Continuum Hypothesis.
This book presents a novel approach to umbral calculus, which uses only elementary linear algebra (matrix calculus) based on the observation that there is an isomorphism between Sheffer polynomials and Riordan matrices, and that Sheffer polynomials can be expressed in terms of determinants. Additionally, applications to linear interpolation and operator approximation theory are presented in many settings related to various families of polynomials.
The aim of this book is to present recent results in both theoretical and applied knot theory-which are at the same time stimulating for leading researchers in the field as well as accessible to non-experts. The book comprises recent research results while covering a wide range of different sub-disciplines, such as the young field of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics.
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics.
.A unique book concentrated on theory of discrete dynamical
systems and its traditional as well as advanced applications to
economics. .A unique book concentrated on theory of discrete dynamical
systems and its traditional as well as advanced applications to
economics. |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,572
Discovery Miles 25 720
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,623
Discovery Miles 26 230
|