![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
This book develops a clear and systematic treatment of time series of data, regular and chaotic, that one finds in observations of nonlinear systems. The reader is led from measurements of one or more variables through the steps of building models of the source as a dynamical system, classifying the source by its dynamical characteristics, and finally predicting and controlling the dynamical system. The text examines methods for separating the signal of physical interest from contamination by unwanted noise, and for investigating the phase space of the chaotic signal and its properties. The emphasis throughout is on the use of the modern mathematical tools for investigating chaotic behavior to uncover properties of physical systems. The methods require knowledge of dynamical systems at the advanced undergraduate level and some knowledge of Fourier transforms and other signal processing methods. The toolkit developed in the book will provide the reader with efficient and effective methods for analyzing signals from nonlinear sources; these methods are applicable to problems of control, communication, and prediction in a wide variety of systems encountered in physics, chemistry, biology, and geophysics.
Wavelets and wavelet packets provide a theory analogous to Fourier analysis and tools analogous to coherent state methods. Among their numerous applications, wavelets have been used to data compression in both image and sound processing. They are intimately related to splines, and wavelet applications in spline theory are significant. Wavelets have become a tool in analyzing fractals and iterative schemes associated with dynamical systems. Signal processing methods such as quadrature mirror filters go hand in hand with wavelet techniques in studying a host of communcations problems. The profound issues of classical turbulence are being studied using wavelet packets. Both wavelet packet software and wavelet transform microchips are now available. There are also applications of wavelet theory in theoretical physics, oil exploration, irregular sampling, and singular integral operators. Many of the world's experts in the field of wavelets were principal speakers at the ASI, and their papers appear in this volume. Furthermore, these renowned scientists addressed their talks to an audience which consisted of a broad spectrum of pure and applied mathematicians, as well as a diverse group of engineers and scientists. Thus, the reader has the opportunity to both learn or reinforce the fundamental concepts from the individuals who have created and developed the blossoming field of wavelets, and to see them discuss in accessible terms their profound contributions and ideas for future research.
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.
This book (along with volume 2 covers most of the traditional methods for polynomial root-finding such as Newton s, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent s method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled A Handbook of Methods for Polynomial Root-finding . This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic.
"
The Proceedings volume contains 16 contributions to the IMPA conference "New Trends in Parameter Identification for Mathematical Models", Rio de Janeiro, Oct 30 - Nov 3, 2017, integrating the "Chemnitz Symposium on Inverse Problems on Tour". This conference is part of the "Thematic Program on Parameter Identification in Mathematical Models" organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.
This book discusses some of the first principles of modern analysis. I t can be used for courses at several levels, depending upon the background and ability of the students. It was written on the premise that today's good students have unexpected enthusiasm and nerve. When hard work is put to them, they work harder and ask for more. The honors course (at the University of Wisconsin) which inspired this book was, I think, more fun than the book itself. And better. But then there is acting in teaching, and a typewriter is a poor substitute for an audience. The spontaneous, creative disorder that characterizes an exciting course becomes silly in a book. To write, one must cut and dry. Yet, I hope enough of the spontaneity, enough of the spirit of that course, is left to enable those using the book to create exciting courses of their own. Exercises in this book are not designed for drill. They are designed to clarify the meanings of the theorems, to force an understanding of the proofs, and to call attention to points in a proof that might otherwise be overlooked. The exercises, therefore, are a real part of the theory, not a collection of side issues, and as such nearly all of them are to be done. Some drill is, of course, necessary, particularly in the calculation of integrals.
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: * A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. * The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.
Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and complementary slackness; extreme points and directions; resolution and representation of polyhedra; simplicial topology; and fixed point theorems, among others. A strength of this work is how these topics are developed in a fully integrated fashion.
Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation," which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.
This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.
This monograph is devoted to recent progress in the turnpike t- ory. Turnpike properties are well known in mathematical economics. The term was ?rst coined by Samuelson who showed that an e?cient expanding economy would for most of the time be in the vicinity of a balanced equilibrium path (also called a von Neumann path) [78, 79]. These properties were studied by many authors for optimal trajec- ries of a Neumann-Gale model determined by a superlinear set-valued mapping. In the monograph we discuss a number of results conce- ing turnpike properties in the calculus of variations and optimal control which were obtained by the author in the last ten years. These results showthattheturnpikepropertiesareageneralphenomenonwhichholds for various classes of variational problems and optimal control problems. Turnpike properties are studied for optimal control problems on- nite time intervals [T ,T ] of the real line. Solutions of such problems 1 2 (trajectories) always depend on the time interval [T ,T ], an optimality 1 2 criterion which is usually determined by a cost function, and on data which is some initial conditions. In the turnpike theory we are int- ested in the structure of solutions of optimal problems. We study the behavior of solutions when an optimality criterion is ?xed while T ,T 1 2 andthedatavary.
Asymptotic methods belong to the, perhaps, most romantic area of modern mathematics. They are widely known and have been used in me chanics, physics and other exact sciences for many, many decades. But more than this, asymptotic ideas are found in all branches of human knowledge, indeed in all areas of life. In this broader context they have not and perhaps cannot be fully formalized. However, they are mar velous, they leave room for fantasy, guesses and intuition; they bring us very near to the border of the realm of art. Many books have been written and published about asymptotic meth ods. Most of them presume a mathematically sophisticated reader. The authors here attempt to describe asymptotic methods on a more accessi ble level, hoping to address a wider range of readers. They have avoided the extreme of banishing formulae entirely, as done in some popular science books that attempt to describe mathematical methods with no mathematics. This is impossible (and not wise). Rather, the authors have tried to keep the mathematics at a moderate level. At the same time, using simple examples, they think they have been able to illustrate all the key ideas of asymptotic methods and approaches, to depict in de tail the results of their application to various branches of knowledg- from astronomy, mechanics, and physics to biology, psychology and art. The book is supplemented by several appendices, one of which con tains the profound ideas of R. G."
This work fills an important gap in the literature by providing an important link between MAPLE and its successful use in solving problems in Operations Research (OR). The symbolic, numerical, and graphical aspects of MAPLE make this software package an ideal tool for treating certain OR problems and providing descriptive and optimization-based analyses of deterministic and stochastic models. Detailed is MAPLE's treatment of some of the mathematical techniques used in OR modeling: e.g., algebra and calculus, ordinary and partial differential equations, linear algebra, transform methods, and probability theory. A number of examples of OR techniques and applications are presented, such as linear and nonlinear programming, dynamic programming, stochastic processes, inventory models, queueing systems, and simulation. Throughout the text MAPLE statements used in the solutions of problems are clearly explained. At the same time, technical background material is presented in a rigorous mathematical manner to reach the OR novice and professional. Numerous end-of- chapter exercises, a good bibliography and overall index at the end of the book are also included, as well as MAPLE worksheets that are easily downloadable from the author's website at www.business.mcmaster.ca/msis/profs/parlar, or from the Birkhauser website at www.birkhauser.com/cgi-win/ISBN/0-8176-4165-3. The book is intended for advanced undergraduate and graduate students in operations research, management science departments of business schools, industrial and systems engineering, economics, and mathematics. As a self-study resource, the text can be used by researchers and practitioners who want a quick overview ofMAPLE's usefulness in solving realistic OR problems that would be difficult or impossible to solve with other software packages.
This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems."
Presents a discrete in time-space universal map of relative dynamics that is used to unfold an extensive catalogue of dynamic events not previously discussed in mathematical or social science literature. With emphasis on the chaotic dynamics that may ensue, the book describes the evolution on the basis of temporal and locational advantages. It explains nonlinear discrete time dynamic maps primarily through numerical simulations. These very rich qualitative dynamics are linked to evolution processes in socio-spatial systems. Important features include: The analytical properties of the one-stock, two- and three-location map; the numerical results from the one- and two-stock, two- and three-location dynamics; and the demonstration of the map's potential applicability in the social sciences through simulating population dynamics of the U.S. Regions over a two-century period. In addition, this book includes new findings: the Hopf equivalent discrete time dynamics bifurcation; the Feigenbaum slope-sequences; the presence of strange local attractors and containers; switching of extreme states; the presence of different types of turbulence; local and global turbulence. Intended for researchers and advanced graduate students in applied mathematics and an interest in dynamics and chaos. Mathematical social scientists in many other fields will also find this book useful.
The book collects the most significant contributions of the outstanding Czech mathematician Jind ich Ne as, who was honoured with the Order of Merit of the Czech Republic by President Vaclav Havel. Starting with Ne as s brief biography and short comments on his role in the beginnings of modern PDE research in Prague, the book then follows the periods of his research career. The first part is devoted to the linear theory of partial differential equations. Its topics include the variational approach to linear boundary value problems and the Rellich - Ne as inequalities, together with their applications to boundary regularity. The second part is concerned with the regularity for nonlinear elliptic systems, which are related to Hilbert s 19th and 20th problems. The third part focuses on Nonlinear Functional Analysis and its applications to non-linear PDEs, while the last part deals with topics in the mathematical theory of various models in Continuum Mechanics, including elasticity and plasticity, the Navier-Stokes equations, transonic flows, and multipolar fluids. The editorial contributions were written by: I. Babu ka, P. Ciarlet, P. Drabek, M. Feistauer, I. Hlava ek, J. Jaru ek, O. John, J. Kristensen, A. Kufner, J. Malek, G. Mingione, . Ne asova, M. Pokorny, P. Quittner, T. Roubi ek, G. Seregin and J. Stara."
The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena. Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.
Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then, It is that they can't see the problem. one day, perhaps you will find the final G.K. Chesterton, The Scandal of Fa question. ther Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces."
From the Preface: "The material in this book is based on notes for a course which I gave several times at Brown University. The target of the course was juniors and seniors majoring in applied mathematics, engineering and other sciences. My basic goal in the course was to teach standard methods, or what I regard as a basic "bag of tricks". In my opinion the material contained here, for the most part, does not depart widely from traditional subject matter. One such departure is the discussion of discrete linear systems. Besides being interesting in its own right, this topic is included because the treatment of such systems leads naturally to the use of discrete Fourier series, discrete Fourier transforms, and their extension, the Z-transform. On making the transition to continuous systems we derive their continuous analogues, viz., Fourier series, Fourier transforms, Fourier integrals and Laplace transforms. A main advantage to the approach taken is that a wide variety of techniques are seen to result from one or two very simple but central ideas. Above all, this course is intended as being one which gives the student a "can-do" frame of mind about mathematics. Students should be given confidence in using mathematics and not be made fearful of it. I have, therefore, forgone the theorem-proof format for a more informal style. Finally, a concerted effort was made to present an assortment of examples from diverse applications with the hope of attracting the interest of the student, and an equally dedicated effort was made to be kind to the reader."
This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.
This monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically beginning with introductory material and leading to the original research of the authors. Topics are motivated with a number of physical examples from the areas of elastic materials, one-dimensional gas dynamics, and waves. Aimed at researchers and graduate students in partial differential equations and related topics, this book will stimulate further research and help readers further understand important aspects and recent progress of regular nonlinear hyperbolic waves.
This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics |
![]() ![]() You may like...
Jaakko Hintikka on Knowledge and…
Hans van Ditmarsch, Gabriel Sandu
Hardcover
R4,784
Discovery Miles 47 840
The Realism-Antirealism Debate in the…
Shahid Rahman, Giuseppe Primiero, …
Hardcover
R4,399
Discovery Miles 43 990
|