![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
While mathematics students generally meet the Riemann integral early in their undergraduate studies, those whose interests lie more in the direction of applied mathematics will probably find themselves needing to use the Lebesgue or Lebesgue-Stieltjes Integral before they have acquired the necessary theoretical background. This book is aimed at exactly this group of readers. The authors introduce the Lebesgue-Stieltjes integral on the real line as a natural extension of the Riemann integral, making the treatment as practical as possible. They discuss the evaluation of Lebesgue-Stieltjes integrals in detail, as well as the standard convergence theorems, and conclude with a brief discussion of multivariate integrals and surveys of L spaces plus some applications. The whole is rounded off with exercises that extend and illustrate the theory, as well as providing practice in the techniques.
This monograph focuses on the mathematical and numerical analysis of simplicial partitions and the finite element method. This active area of research has become an essential part of physics and engineering, for example in the study of problems involving heat conduction, linear elasticity, semiconductors, Maxwell's equations, Einstein's equations and magnetic and gravitational fields. These problems require the simulation of various phenomena and physical fields over complicated structures in three (and higher) dimensions. Since not all structures can be decomposed into simpler objects like d-dimensional rectangular blocks, simplicial partitions are important. In this book an emphasis is placed on angle conditions guaranteeing the convergence of the finite element method for elliptic PDEs with given boundary conditions. It is aimed at a general mathematical audience who is assumed to be familiar with only a few basic results from linear algebra, geometry, and mathematical and numerical analysis.
A Panorama of Harmonic Analysis treats the subject of harmonic analysis, from its earliest beginnings to the latest research. Following both an historical and a conceptual genesis, the book discusses Fourier series of one and several variables, the Fourier transform, spherical harmonics, fractional integrals, and singular integrals on Euclidean space. The climax of the book is a consideration of the earlier ideas from the point of view of spaces of homogeneous type. The book culminates with a discussion of wavelets-one of the newest ideas in the subject. A Panorama of Harmonic Analysis is intended for graduate students, advanced undergraduates, mathematicians, and anyone wanting to get a quick overview of the subject of cummutative harmonic analysis. Applications are to mathematical physics, engineering and other parts of hard science. Required background is calculus, set theory, integration theory, and the theory of sequences and series.
A NATO Advanced Study Institute on Approximation Theory and Spline Functions was held at Memorial University of Newfoundland during August 22-September 2, 1983. This volume consists of the Proceedings of that Institute. These Proceedings include the main invited talks and contributed papers given during the Institute. The aim of these lectures was to bring together Mathematicians, Physicists and Engineers working in the field. The lectures covered a wide range including 1ultivariate Approximation, Spline Functions, Rational Approximation, Applications of Elliptic Integrals and Functions in the Theory of Approximation, and Pade Approximation. We express our sincere thanks to Professors E. W. Cheney, J. Meinguet, J. M. Phillips and H. Werner, members of the International Advisory Committee. We also extend our thanks to the main speakers and the invi ted speakers, whose contri butions made these Proceedings complete. The Advanced Study Institute was financed by the NATO Scientific Affairs Division. We express our thanks for the generous support. We wish to thank members of the Department of Mathematics and Statistics at MeMorial University who willingly helped with the planning and organizing of the Institute. Special thanks go to Mrs. Mary Pike who helped immensely in the planning and organizing of the Institute, and to Miss Rosalind Genge for her careful and excellent typing of the manuscript of these Proceedings."
As technology progresses, we are able to handle larger and larger datasets. At the same time, monitoring devices such as electronic equipment and sensors (for registering images, temperature, etc.) have become more and more sophisticated. This high-tech revolution offers the opportunity to observe phenomena in an increasingly accurate way by producing statistical units sampled over a finer and finer grid, with the measurement points so close that the data can be considered as observations varying over a continuum. Such continuous (or functional) data may occur in biomechanics (e.g. human movements), chemometrics (e.g. spectrometric curves), econometrics (e.g. the stock market index), geophysics (e.g. spatio-temporal events such as El Nino or time series of satellite images), or medicine (electro-cardiograms/electro-encephalograms). It is well known that standard multivariate statistical analyses fail with functional data. However, the great potential for applications has encouraged new methodologies able to extract relevant information from functional datasets. This Handbook aims to present a state of the art exploration of this high-tech field, by gathering together most of major advances in this area. Leading international experts have contributed to this volume with each chapter giving the key original ideas and comprehensive bibliographical information. The main statistical topics (classification, inference, factor-based analysis, regression modelling, resampling methods, time series, random processes) are covered in the setting of functional data. The twin challenges of the subject are the practical issues of implementing new methodologies and the theoretical techniques needed to expand the mathematical foundations and toolbox. The volume therefore mixes practical, methodological and theoretical aspects of the subject, sometimes within the same chapter. As a consequence, this book should appeal to a wide audience of engineers, practitioners and graduate students, as well as academic researchers, not only in statistics and probability but also in the numerous related application areas.
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok's new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic.... The author's clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Trace and determinant functionals on operator algebras provide a means of constructing invariants in analysis, topology, differential geometry, analytic number theory, and quantum field theory. The consequent developments around such invariants have led to significant advances both in pure mathematics and theoretical physics. As the fundamental tools of trace theory have become well understood and clear general structures have emerged, so the need for specialist texts which explain the basic theoretical principles and computational techniques has become increasingly urgent. Providing a broad account of the theory of traces and determinants on algebras of differential and pseudodifferential operators over compact manifolds, this text is the first to deal with trace theory in general, encompassing a number of the principle applications and backed up by specific computations which set out in detail the nuts-and-bolts of the basic theory. Both the microanalytic approach to traces and determinants via pseudodifferential operator theory and the more computational approach directed by applications in geometric analysis, are developed in a general framework that will be of interest to mathematicians and physicists in a number of different fields.
A provocative look at the tools and history of real analysis This new edition of "Real Analysis: A Historical Approach" continues to serve as an interesting read for students of analysis. Combining historical coverage with a superb introductory treatment, this book helps readers easily make the transition from concrete to abstract ideas. The book begins with an exciting sampling of classic and famous problems first posed by some of the greatest mathematicians of all time. Archimedes, Fermat, Newton, and Euler are each summoned in turn, illuminating the utility of infinite, power, and trigonometric series in both pure and applied mathematics. Next, Dr. Stahl develops the basic tools of advanced calculus, which introduce the various aspects of the completeness of the real number system as well as sequential continuity and differentiability and lead to the Intermediate and Mean Value Theorems. The Second Edition features: A chapter on the Riemann integral, including the subject of uniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint of sequences over that of series Throughout the book, numerous applications and examples reinforce concepts and demonstrate the validity of historical methods and results, while appended excerpts from original historical works shed light on the concerns of influential mathematicians in addition to the difficulties encountered in their work. Each chapter concludes with exercises ranging in level of complexity, and partial solutions are provided at the end of the book. "Real Analysis: A Historical Approach, Second Edition" is an ideal book for courses on real analysis and mathematical analysis at the undergraduate level. The book is also a valuable resource for secondary mathematics teachers and mathematicians.
Norton's Complex Variables for Scientists and Engineers is a new
textbook, originally written for the Complex Analysis term of an
undergraduate Mathematical Methods of Physics sequence at UCLA. It
does not assume any prior knowledge of complex numbers or functions
and is therefore suitable for a first course in the subject for
undergraduate students who have had an introductory course in the
standard calculus of real variables.
'Et moi, ..., si favait su comment eo reveoir. je One service mathematics has rendered the n'y serais point all6.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded nonsense'. Tbe series is divergent; therefore we may be EricT. Bell ajle to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari tL es abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science . .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series."
A. K. Louis, Universitat des Saarlandes, Germany P. Maass, Universitat Potsdam, Germany A. Rieder, Universitat des Saarlandes, Germany Wavelets have in recent years brought new approaches to the areas of analysis and synthesis of signals, a few examples of which include pattern recognition, data compression, numerical analysis, quantum field theory and acoustics. In this book the authors take the reader through both the theory of wavelets and their applications. Chapter one is devoted to the theoretical background of the wavelet transform and to some of its properties, moving on to the discrete transform. The second chapter addresses the functions of wavelets within mathematics and their construction is introduced. Finally, chapter three presents a selection of the broad variety of applications of wavelets, including examples from signal analysis, quality control, data compression in digital image processing, the regularlization of ill posed problems and numerical analysis of boundary value problems. This book provides an invaluable resource for researchers and professionals in applied mathematics, particularly in numerical analysis and signal processing, as well as for engineers and physicists with a strong mathematical background. Contents Notations Introduction
This monograph has arisen out of a number of attempts spanning almost five decades to understand how one might examine the evolution of densities in systems whose dynamics are described by differential delay equations. Though the authors have no definitive solution to the problem, they offer this contribution in an attempt to define the problem as they see it, and to sketch out several obvious attempts that have been suggested to solve the problem and which seem to have failed. They hope that by being available to the general mathematical community, they will inspire others to consider-and hopefully solve-the problem. Serious attempts have been made by all of the authors over the years and they have made reference to these where appropriate.
this monographis based on two courses in computational mathematics and operative research, which were given by the author in recent years to doctorate and PhD students. The text focuses on an aspect of the theory of inverse problems, which is usually referred to as identification of parameters (numbers, vectors, matrices, functions) appearing in differential- or integrodifferential- equations. The parameters of such equations are either quite unknown or partially unknown, however knowledge about these is usually essential as they describe the intrinsic properties of the material or substance under consideration.
The simulation of complex engineering problems often involves an interaction or coupling of individual phenomena, which are traditionally related by themselves to separate fields of applied mechanics. Typical examples of these so- called multifield problems are the thermo-mechanical analysis of solids with coupling between mechanical stress analysis and thermal heat transfer processes, the simulation of coupled deformation and fluid transport mechanisms in porous media, the prediction of mass transport and phase transition phenomena of mixtures, the analysis of sedimentation proces- ses based on an interaction of particle dynamics and viscous flow, the simulation of multibody systems and fluid-structure interactions based on solid-to-solid and solid-to-fluid contact mechanisms.
This proceedings volume covers research in key areas of applied mathematical analysis, and gathers works presented at the international conference "Concord-90," in honor of the 90th birthday of Professor Constantin Corduneanu (1928-2018). The event - which Professor Corduneanu was able to attend - was held at Ural Federal University in Ekaterinburg, Russia, on July 26-28, 2018. Professor Corduneanu's research in mathematical analysis spanned nearly seven decades and explored a range of important issues in the field, including studies of global existence, stability problems, and oscillation theory, with special emphasis on various classes of nonlinear equations. He published over two hundred articles and several books, including "Almost Periodic Oscillations and Waves" (Springer, 2009). In this volume the reader will find selected, peer-reviewed articles from seven fields of research - Differential Equations, Optimal Control and Stabilization; Stochastic Methods; Topology and Functions Approximation; Mathematical Biology and Bioinformatics; Mathematical Modeling in Mining; Mathematical Modeling in Economics; and Computer Science and Image Processing - which honor and reflect Professor Corduneanu's legacy in the fields of oscillation, stability and control theory.
This monograph explores the motion of incompressible fluids by presenting and incorporating various boundary conditions possible for real phenomena. The authors' approach carefully walks readers through the development of fluid equations at the cutting edge of research, and the applications of a variety of boundary conditions to real-world problems. Special attention is paid to the equivalence between partial differential equations with a mixture of various boundary conditions and their corresponding variational problems, especially variational inequalities with one unknown. A self-contained approach is maintained throughout by first covering introductory topics, and then moving on to mixtures of boundary conditions, a thorough outline of the Navier-Stokes equations, an analysis of both the steady and non-steady Boussinesq system, and more. Equations of Motion for Incompressible Viscous Fluids is ideal for postgraduate students and researchers in the fields of fluid equations, numerical analysis, and mathematical modelling.
Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included: * Asymptotic theory of convexity and normed spaces * Concentration of measure and isoperimetric inequalities, optimal transportation approach * Applications of the concept of concentration * Connections with transformation groups and Ramsey theory * Geometrization of probability * Random matrices * Connection with asymptotic combinatorics and complexity theory These directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science.
This book includes over 500 most challenging exercises and problems in calculus. Topical problems and exercises are discussed on set theory, numbers, functions, limits and continuity, derivative, integral calculus, Rolle's theorem, mean value theorem, optimization problems, sequences and series. All the seven chapters recall important definitions, theorems and concepts, making this book immensely valuable to undergraduate students of engineering, mathematics, statistics, computer science and basic sciences.
This book focuses on a large class of multi-valued variational differential inequalities and inclusions of stationary and evolutionary types with constraints reflected by subdifferentials of convex functionals. Its main goal is to provide a systematic, unified, and relatively self-contained exposition of existence, comparison and enclosure principles, together with other qualitative properties of multi-valued variational inequalities and inclusions. The problems under consideration are studied in different function spaces such as Sobolev spaces, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents, and Beppo-Levi spaces. A general and comprehensive sub-supersolution method (lattice method) is developed for both stationary and evolutionary multi-valued variational inequalities, which preserves the characteristic features of the commonly known sub-supersolution method for single-valued, quasilinear elliptic and parabolic problems. This method provides a powerful tool for studying existence and enclosure properties of solutions when the coercivity of the problems under consideration fails. It can also be used to investigate qualitative properties such as the multiplicity and location of solutions or the existence of extremal solutions. This is the first in-depth treatise on the sub-supersolution (lattice) method for multi-valued variational inequalities without any variational structures, together with related topics. The choice of the included materials and their organization in the book also makes it useful and accessible to a large audience consisting of graduate students and researchers in various areas of Mathematical Analysis and Theoretical Physics.
Is anything truly random? Does infinity actually exist? Could we ever see into other dimensions? In this delightful journey of discovery, David Darling and extraordinary child prodigy Agnijo Banerjee draw connections between the cutting edge of modern maths and life as we understand it, delving into the strange would we like alien music? and venturing out on quests to consider the existence of free will and the fantastical future of quantum computers. Packed with puzzles and paradoxes, mind-bending concepts and surprising solutions, this is for anyone who wants life s questions answered even those you never thought to ask.
The last few years have witnessed a surge in the development and usage of discretization methods supporting general meshes in geoscience applications. The need for general polyhedral meshes in this context can arise in several situations, including the modelling of petroleum reservoirs and basins, CO2 and nuclear storage sites, etc. In the above and other situations, classical discretization methods are either not viable or require ad hoc modifications that add to the implementation complexity. Discretization methods able to operate on polyhedral meshes and possibly delivering arbitrary-order approximations constitute in this context a veritable technological jump. The goal of this monograph is to establish a state-of-the-art reference on polyhedral methods for geoscience applications by gathering contributions from top-level research groups working on this topic. This book is addressed to graduate students and researchers wishing to deepen their knowledge of advanced numerical methods with a focus on geoscience applications, as well as practitioners of the field.
This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak-Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional analytic framework. This theory is established in the first part of the book, which serves as an introduction to the subject, but is also an important ingredient of the whole story. The second part uses these theoretical tools for various types of PDEs, including abstract and parabolic equations but also PDEs arising from fluid and solid mechanics. For connoisseurs, there is a short chapter on homogenization of elliptic PDEs. The book will be of interest to researchers working in PDEs and in functional analysis.
For freshman/sophomore-level courses treating calculus of both one and several variables. Clear and Concise! Varberg focuses on the most critical concepts freeing you to teach the way you want! This popular calculus text remains the shortest mainstream calculus book available - yet covers all the material needed by, and at an appropriate level for, students in engineering, science, and mathematics. It's conciseness and clarity helps students focus on, and understand, critical concepts in calculus without them getting bogged down and lost in excessive and unnecessary detail. It is accurate, without being excessively rigorous, up-to-date without being faddish. The authors make effective use of computing technology, graphics, and applications. Ideal for instructors who want a no-nonsense, concisely written treatment.
This book is a new edition of "Tensors and Manifolds: With Applications to Mechanics and Relativity" which was published in 1992. It is based on courses taken by advanced undergraduate and beginning graduate students in mathematics and physics, giving an introduction to the expanse of modern mathematics and its application in modern physics. It aims to fill the gap between the basic courses and the highly technical and specialised courses which both mathematics and physics students require in their advanced training, while simultaneously trying to promote, at an early stage, a better appreciation and understanding of each other's discipline. The book sets forth the basic principles of tensors and manifolds, describing how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics. The existing material from the first edition has been reworked and extended in some sections to provide extra clarity, as well as additional problems. Four new chapters on Lie groups and fibre bundles have been included, leading to an exposition of gauge theory and the standard model of elementary particle physics. Mathematical rigour combined with an informal style makes this a very accessible book and will provide the reader with an enjoyable panorama of interesting mathematics and physics.
This book is intended to serve as a text in mathematical analysis for undergraduate and postgraduate students. It opens with a brief outline of the essential properties of rational numbers using Dedekind's cut, and the properties of real numbers are established. This foundation supports the subsequent chapters. The material of some of topics - real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, Lebesgue integrals, line and surface Integrals, double and triple integrals are discussed in detail. Uniform convergence, Power series, Fourier series, and Improper integrals have been presented in a simple and lucid manner. A large number of solved examples taken mostly from lecture notes make the book useful for the students. A chapter on Metric Spaces discussing completeness, compactness and connectedness of the spaces and two appendices discussing Beta-Gamma functions and Cantor's theory of real numbers add glory to the contents of the book. |
You may like...
Commutative Algebra, Singularities and…
Jurgen Herzog, Victor Vuletescu
Hardcover
R4,163
Discovery Miles 41 630
Ethics of Computing - Codes, spaces for…
Jacques J. Berleur, Klaus Brunnstein
Hardcover
R4,195
Discovery Miles 41 950
Seminar on Stochastic Analysis, Random…
Robert Dalang, Marco Dozzi, …
Hardcover
R2,745
Discovery Miles 27 450
Computing with Data - An Introduction to…
Guy Lebanon, Mohamed El-Geish
Hardcover
R2,737
Discovery Miles 27 370
The Murder Mystery Club Puzzle Book
Dr Gareth Moore, Laura Jayne Ayres
Paperback
|