![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Is the exponential function computable? Are union and intersection of closed subsets of the real plane computable? Are differentiation and integration computable operators? Is zero finding for complex polynomials computable? Is the Mandelbrot set decidable? And in case of computability, what is the computational complexity? Computable analysis supplies exact definitions for these and many other similar questions and tries to solve them. - Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid basis for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.
* Written in a fluid and accessible style, replete with exercises; ideal for undergraduate courses * Suitable for students of land surveying and natural science, as well as professionals, but also for map amateurs
These Proceedings contain selected papers by the speakers invited to the Seminar on Deformations, organized in 1985/87 by Julian tawryno- wicz (t6dz), whose most fruitful parts took place in 1986 in Lublin during the 3rd Finnish-Polish Summer School in Complex Analysis [in cooperation with O. Martio (JyvliskyHl)] held simultaneously with the 9th Conference on Analytic Function in Poland [in cooperation with S. Dimiev (Sofia), P. Dolbeault (Paris), K. Spallek (Bochum), and E. Vesen- tini (Pisa)]. The Lublin session of the Seminar, organized jointly with S. Dimiev and K. Spallek, was preceded by a session organized by them at Druzhba (near Varna) in 1985 and followed by a similar session at Druzhba in 1987. The collection contains 31 papers connected with deformations of mathematical structures in the context of complex analysis with physi- cal applications: (quasi)conformal deformation uniformization, potential theory, several complex variables, geometric algebra, algebraic ge- ometry, foliations, Hurwitz pairs, and Hermitian geometry. They are research papers in final form: no version of them will be submitted for publication elsewhere. In contrast to the previous volume (Seminar on Deformations, Proceedings, L6dz-WarsaUJ 1982/84, ed. by J. -i:.awrynowicz, Lecture Notes in Math. 1165, Springer, Berlin-Heidelberg- -New York-Tokyo 1985, X + 331 pp.) open problems are not published as separate research notes, but are included in the papers.
Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure of the integrator process, they generalize the usual Ito and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness. It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregular integrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Tecnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
"Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables" builds upon the basic ideas and techniques of differential and integral calculus for functions of several variables, as outlined in an earlier introductory volume. The presentation is largely focused on the foundations of measure and integration theory. The book begins with a discussion of the geometry of Hilbert spaces, convex functions and domains, and differential forms, particularly k-forms. The exposition continues with an introduction to the calculus of variations with applications to geometric optics and mechanics.The authorsconclude with the study of measure and integration theory - Borel, Radon, and Hausdorff measures and the derivation of measures. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This work may be used as a supplementary text in the classroom or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. One of the key strengths of this presentation, along with the other four books on analysis published by the authors, is the motivation for understanding the subject through examples, observations, exercises, and illustrations."
The primary aim of this book is to present notions of convex analysis which constitute the basic underlying structure of argumentation in economic theory and which are common to optimization problems encountered in many applications. The intended readers are graduate students, and specialists of mathematical programming whose research fields are applied mathematics and economics. The text consists of a systematic development in eight chapters, with guided exercises containing sometimes significant and useful additional results. The book is appropriate as a class text, or for self-study.
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. The ergodic theory of smooth dynamical systems is treated. Numerous examples are presented carefully along with the ideas underlying the most important results. Moreover, the book deals with the dynamical systems of statistical mechanics, and with various kinetic equations. For this second enlarged and revised edition, published as Mathematical Physics I, EMS 100, two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations were added. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it.
The main purpose of developing stability theory is to examine
dynamic responses of a system to disturbances as the time
approaches infinity. It has been and still is the object of intense
investigations due to its intrinsic interest and its relevance to
all practical systems in engineering, finance, natural science and
social science. This monograph provides some state-of-the-art
expositions of major advances in fundamental stability theories and
methods for dynamic systems of ODE and DDE types and in limit
cycle, normal form and Hopf bifurcation control of nonlinear
dynamic systems.
This book is concerned with the role played by modules of
infinite length when dealing with problems in the representation
theory of groups and algebras, but also in topology and geometry;
it shows the intriguing interplay between finite and infinite
length modules.
The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations."
This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science.
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham's razor: "Entities should not be multiplied without neces sity. " This principle enabled scientists to select the "best" physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage"spoken"whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the "language" or "dictionary" used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you'll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.
Harish-Chandra¿s general Plancherel inversion theorem admits a much shorter presentation for spherical functions. Previous expositions have dealt with a general, wide class of Lie groups. This has made access to the subject difficult for outsiders, who may wish to connect some aspects with several if not all other parts of mathematics. In this book, the essential features of Harish-Chandra theory are exhibited on SLn(R), but hundreds of pages of background are replaced by short direct verifications. The material is accessible to graduate students with no background in Lie groups and representation theory.
by John Stillwell I. General Reaarb , Poincare's papers on Fuchsian and Kleinian I1'OUps are of Il'eat interest from at least two points of view: history, of course, but also as an inspiration for further mathematical proll'ess. The papers are historic as the climax of the ceometric theory of functions initiated by Riemann, and ideal representatives of the unity between analysis, ceometry, topololY and alcebra which prevailed during the 1880's. The rapid mathematical prOll'ess of the 20th century has been made at the expense of unity and historical perspective, and if mathematics is not to disintell'ate altogether, an effort must sometime be made to find its , main threads and weave them tocether 81ain. Poincare's work is an excellent example of this process, and may yet prove to be at the core of a . new synthesis. Certainly, we are now able to gather up , some of the loose ends in Poincare, and a broader synthesis seems to be actually taking place in the work of Thurston. The papers I have selected include the three Il'eat memoirs in the first volumes of Acta Math. -tice, on* Fuchsian groups, Fuchsian , functions, and Kleinian groups (Poincare [1882 a,b,1883]). These are the papers which made his reputation and they include many results and proofs which are now standard. They are preceded by an , unedited memoir written by Poincare in May 1880 at the height of his , creative ferment.
This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory..
This book is about regularity properties of functional equations. In the second part of his fifth problem, Hilbert asked, concerning functional equations - in how far are the assertions which we can make in the case of differentiable functions true under proper modifications without this assumption? This book contains, in a unified fashion, most of the modern results about regularity of non-composite functional equations with several variables. These results show that 'weak' regularity properties, say measurability or continuity, of solutions imply that they are in C infinity], and hence the equation can be reduced to a differential equation. A long introduction highlights the basic ideas for beginners. Several applications are also included.
This fairly self-contained work embraces a broad range of topics in analysis at the graduate level, requiring only a sound knowledge of calculus and the functions of one variable. A key feature of this lively yet rigorous and systematic exposition is the historical accounts of ideas and methods pertaining to the relevant topics. Most interesting and useful are the connections developed between analysis and other mathematical disciplines, in this case, numerical analysis and probability theory. The text is divided into two parts: The first examines the systems of real and complex numbers and deals with the notion of sequences in this context. After the presentation of natural numbers as a subset of the reals, elements of combinatorics and a discussion of the mathematical notion of the infinite are introduced. The second part is dedicated to discrete processes starting with a study of the processes of infinite summation both in the case of numerical series and of power series.
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.
Operator theory, system theory, scattering theory, and the
theory of analytic functions of one complex variable are deeply
related topics, and the relationships between these theories are
well understood. When one leaves the setting of one operator and
considers several operators, the situation is much more involved.
There is no longer a single underlying theory, but rather different
theories, some of them loosely connected and some not connected at
all. These various theories, which one could call "multidimensional
operator theory," are topics of active and intensive
research.
This is a textbook containing more than enough material for a year-long course in analysis at the advanced undergraduate or beginning graduate level. The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral. The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean space). The final part of the book deals with manifolds, differential forms, and Stokes' theorem, which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle.
Predictive analytics refers to making predictions about the future based on different parameters which are historical data, machine learning, and artificial intelligence. This book provides the most recent advances in the field along with case studies and real-world examples. It discusses predictive modeling and analytics in reliability engineering and introduces current achievements and applications of artificial intelligence, data mining, and other techniques in supply chain management. It covers applications to reliability engineering practice, presents numerous examples to illustrate the theoretical results, and considers and analyses case studies and real-word examples. The book is written for researchers and practitioners in the field of system reliability, quality, supply chain management, and logistics management. Students taking courses in these areas will also find this book of interest. |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,623
Discovery Miles 26 230
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,717
Discovery Miles 37 170
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,971
Discovery Miles 29 710
|