Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book uses a mathematical approach to deriving the laws of science and technology, based upon the concept of Fisher information. The approach that follows from these ideas is called the principle of Extreme Physical Information (EPI). The authors show how to use EPI to determine the theoretical input/output laws of unknown systems. Will benefit readers whose math skill is at the level of an undergraduate science or engineering degree.
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include * Diagrammatic illustrations that encourage readers to think geometrically * Focus on systematic strategy to generate ideas for the proofs of theorems * A wealth of remarks, observations along with a variety of exercises * Historical notes and brief biographies appearing throughout the text
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the general microlocal semiclassical approach is developed, and microlocal and local semiclassical spectral asymptotics are derived.
This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. This second volume presents classical analysis in its current form as part of a unified mathematics. It shows how analysis interacts with other modern fields of mathematics such as algebra, differential geometry, differential equations, complex analysis, and functional analysis. This book provides a firm foundation for advanced work in any of these directions.
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language - and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of "building" objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell's paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Introductory Mathematical Analysis for Quantitative Finance is a textbook designed to enable students with little knowledge of mathematical analysis to fully engage with modern quantitative finance. A basic understanding of dimensional Calculus and Linear Algebra is assumed. The exposition of the topics is as concise as possible, since the chapters are intended to represent a preliminary contact with the mathematical concepts used in Quantitative Finance. The aim is that this book can be used as a basis for an intensive one-semester course. Features: Written with applications in mind, and maintaining mathematical rigor. Suitable for undergraduate or master's level students with an Economics or Management background. Complemented with various solved examples and exercises, to support the understanding of the subject.
This book is to be a new edition of Applied Analysis. Several fundamental materials of applied and theoretical sciences are added, which are needed by the current society, as well as recent developments in pure and applied mathematics. New materials in the basic level are the mathematical modelling using ODEs in applied sciences, elements in Riemann geometry in accordance with tensor analysis used in continuum mechanics, combining engineering and modern mathematics, detailed description of optimization, and real analysis used in the recent study of PDEs. Those in the advance level are the integration of ODEs, inverse Strum Liouville problems, interface vanishing of the Maxwell system, method of gradient inequality, diffusion geometry, mathematical oncology. Several descriptions on the analysis of Smoluchowski-Poisson equation in two space dimension are corrected and extended, to ensure quantized blowup mechanism of this model, particularly, the residual vanishing both in blowup solution in finite time with possible collision of sub-collapses and blowup solutions in infinite time without it.
Content and Aims of this Book Earlier drafts of the manuscript of this book (James A. Boa was then coau thor) contained discussions of many methods and examples of singular perturba tion problems. The ambitious plans of covering a large number of topics were later abandoned in favor of the present goal: a thorough discussion of selected ideas and techniques used in the method of matched asymptotic expansions. Thus many problems and methods are not covered here: the method of av eraging and the related method of multiple scales are mentioned mainly to give reasons why they are not discussed further. Examples which required too sophis ticated and involved calculations, or advanced knowledge of a special field, are not treated; for instance, to the author's regret some very interesting applications to fluid mechanics had to be omitted for this reason. Artificial mathematical examples introduced to show some exotic or unexpected behavior are omitted, except when they are analytically simple and are needed to illustrate mathematical phenomena important for realistic problems. Problems of numerical analysis are not discussed."
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics together. By improving readers' knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader's skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book's web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.
Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and respect for his contributions as scholar, writer, and teacher. It contains articles about Paul, about the times in which he worked and the places he has been, and about mathematics. Paul has furthered his profession in many ways and this collection reflects that diversity. Articles about Paul are not biographical, but rather tell about his ideas, his philosophy, and his style. Articles about the times and places in which Paul has worked describe people, events, and ways in which Paul has influenced students and colleagues over the past 50 years. Articles about mathematics are about all kinds of mathematics, including operator theory and Paul's research in the subject. This volume represents a slice of mathematical life and it shows how many parts of mathematics Paul has touched. It is fitting that this volume has been produced with the support and cooperation of Springer-Verlag. For over 35 years, Paul has contributed to mathematics publishing as founder and editor of many outstanding series.
In the book there are introduced models and methods of construction of pseudo-solutions for the well-posed and ill-posed linear functional equations circumscribing models passive, active and complicated experiments. Two types of the functional equations are considered: systems of the linear algebraic equations and linear integral equations. Methods of construction of pseudos6lutions are developed in the presence of passive right-hand side errors for two types of operator errors: passive measurements and active representation errors of the operator, and all their combinations. For the determined and stochastic models of passive experiments the method of the least distances of construction of pseudosolutions is created, the maximum likelihood method of construction of pseudosolutions is applied for active experiments, and then methods for combinations of models of regression, of passive and of active experiments are created. We have constructed regularized variants of these methods for systems of the linear algebraic equations with the degenerated matrices and for linear integral equations of the first kind. In pure mathematics, the solution techniques of the functional equations with exact input data more often are studied. In applied mathematics, problem consists in construction of pseudosolutions, that is, solution of the hctional equations with perturbed input data. Such problem in many cases is incomparably more complicated. The book is devoted to a problem of construction of a pseudosolution (the problem of a parameter estimation) in the following fundamental sections of applied mathematics: confluent models passive, active and the every possible mixed experiments.
This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky's theorem on periodic points, Thron's results on the convergence of certain real iterates, Shield's common fixed theorem for a commuting family of analytic functions and Bergweiler's existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski's theorem by Merrifield and Stein and Abian's proof of the equivalence of Bourbaki-Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward's theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka's proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory via a certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weierstrass preparation theorem, a Cauchy-Kowalevsky theorem for partial differential equations and the central limit theorem. It also provides a proof of the converse of the contraction principle due to Jachymski, a proof of fixed point theorem for continuous generalized contractions, a proof of Browder-Gohde-Kirk fixed point theorem, a proof of Stalling's generalization of Brouwer's theorem, examine Caristi's fixed point theorem, and highlights Kakutani's theorems on common fixed points and their applications.
This book provides a comprehensive analysis of time domain boundary integral equations and their discretisation by convolution quadrature and the boundary element method. Properties of convolution quadrature, based on both linear multistep and Runge-Kutta methods, are explained in detail, always with wave propagation problems in mind. Main algorithms for implementing the discrete schemes are described and illustrated by short Matlab codes; translation to other languages can be found on the accompanying GitHub page. The codes are used to present numerous numerical examples to give the reader a feeling for the qualitative behaviour of the discrete schemes in practice. Applications to acoustic and electromagnetic scattering are described with an emphasis on the acoustic case where the fully discrete schemes for sound-soft and sound-hard scattering are developed and analysed in detail. A strength of the book is that more advanced applications such as linear and non-linear impedance boundary conditions and FEM/BEM coupling are also covered. While the focus is on wave scattering, a chapter on parabolic problems is included which also covers the relevant fast and oblivious algorithms. Finally, a brief description of data sparse techniques and modified convolution quadrature methods completes the book. Suitable for graduate students and above, this book is essentially self-contained, with background in mathematical analysis listed in the appendix along with other useful facts. Although not strictly necessary, some familiarity with boundary integral equations for steady state problems is desirable.
In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "category" refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.
This text on advanced calculus discusses such topics as number systems, the extreme value problem, continuous functions, differentiation, integration and infinite series. The reader will find the focus of attention shifted from the learning and applying of computational techniques to careful reasoning from hypothesis to conclusion. The book is intended both for a terminal course and as preparation for more advanced studies in mathematics, science, engineering and computation.
This book deals with the learning behavior of boundedly rational agents in economic systems. In particular, the modeling of learning populations by genetic algorithms is studied in detail. After an extensive review and discussion of the existing literature in the first part, a mathematical analysis of the dynamic properties of genetic algorithm learning in the general framework of systems with a state dependent fitness function is provided. It is shown that co-evolutionary economic models typically fall into this class and the usefulness of the analytical results derived is illustrated in several game theoretic and microeconomic models. The mathematical analysis is complemented by extensive simulation analyses. The last part of the book demonstrates how the obtained theory may be used to design the algorithm such that the learning of equilibria of the economic system is facilitated.
This work can be recommended as an extensive course in superanalysis, the theory of functions of commuting and anticommuting variables. It follows the so-called functional superanalysis which was developed by J. Schwinger, B. De Witt, A. Rogers, V.S. Vladimirov and I.V. Volovich, Yu. Kobayashi and S. Nagamashi, M. Batchelor, U. Buzzo and R. Cianci and the present author. In this approach, superspace is defined as a set of points on which commuting and anticommuting coordinates are given. Thus functional superanalysis is a natural generalization of Newton's analysis (on real space) and strongly differs from the so-called algebraic analysis which has no functions of superpoints, and where functions' are just elements of Grassmann algebras. This volume is important for quantum physics in that it offers the possibility of extending the notion of space, and of operating on spaces which are described by noncommuting coordinates. These supercoordinates, which are described by an infinite number of ordinary real, complex or p-adic coordinates, are interpreted as creation or annihilation operators of quantum field theory. Subjects treated include differential calculus, including Cauchy-Riemann conditions, on superspaces over supercommutative Banach and topological superalgebras; integral calculus, including integration of differential forms; theory of distributions and linear partial differential equations with constant coefficients; calculus of pseudo-differential operators; analysis on infinite-dimensional superspaces over supercommutative Banach and topological supermodules; infinite-dimensional superdistributions and Feynman integrals with applications to superfield theory; noncommutativeprobabilities (central limit theorem); and non-Archimedean superanalysis. Audience: This volume will be of interest to researchers and postgraduate students whose work involves functional analysis, Feynman integration and distribution theory on infinite-dimensional (super)spaces and its applications to quantum physics, supersymmetry, superfield theory and supergravity.
In his Retiring Presidential address, delivered before the Annual Meeting of The American Mathematical Society on December, 1948, the late Professor Einar Hille spoke on his recent results on the Lie theory of semigroups of linear transformations, . . * "So far only commutative operators have been considered and the product law . . . is the simplest possible. The non-commutative case has resisted numerous attacks in the past and it is only a few months ago that any headway was made with this problem. I shall have the pleasure of outlining the new theory here; it is a blend of the classical theory of Lie groups with the recent theory of one-parameter semigroups. " The list of references in the subsequent publication of Hille's address (Bull. Amer. Math *. Soc. 56 (1950)) includes pioneering papers of I. E. Segal, I. M. Gelfand, and K. Yosida. In the following three decades the subject grew tremendously in vitality, incorporating a number of different fields of mathematical analysis. Early papers of V. Bargmann, I. E. Segal, L. G~ding, Harish-Chandra, I. M. Singer, R. Langlands, B. Konstant, and E. Nelson developed the theoretical basis for later work in a variety of different applications: Mathematical physics, astronomy, partial differential equations, operator algebras, dynamical systems, geometry, and, most recently, stochastic filtering theory. As it turned out, of course, the Lie groups, rather than the semigroups, provided the focus of attention.
Fractional calculus is used to model many real-life situations from science and engineering. The book includes different topics associated with such equations and their relevance and significance in various scientific areas of study and research. In this book readers will find several important and useful methods and techniques for solving various types of fractional-order models in science and engineering. The book should be useful for graduate students, PhD students, researchers and educators interested in mathematical modelling, physical sciences, engineering sciences, applied mathematical sciences, applied sciences, and so on. This Handbook: Provides reliable methods for solving fractional-order models in science and engineering. Contains efficient numerical methods and algorithms for engineering-related equations. Contains comparison of various methods for accuracy and validity. Demonstrates the applicability of fractional calculus in science and engineering. Examines qualitative as well as quantitative properties of solutions of various types of science- and engineering-related equations. Readers will find this book to be useful and valuable in increasing and updating their knowledge in this field and will be it will be helpful for engineers, mathematicians, scientist and researchers working on various real-life problems.
"This book collects in one volume the author 's considerable results in the area of the summation of series and their representation in closed form, and details the techniques by which they have been obtained... the calculations are given in plenty of detail, and closely related work which has appeared in a variety of places is conveniently collected together." --The Australian Mathematical Society Gazette
For 3-semester or 4-quarter courses covering single variable and multivariable calculus, taken by students of mathematics, engineering, natural sciences, or economics. University Calculus: Early Transcendentals helps students generalise and apply the key ideas of calculus through clear and precise explanations, thoughtfully chosen examples, meticulously crafted figures, and superior exercise sets. This text offers the right mix of basic, conceptual, and challenging exercises, along with meaningful applications. In the 4th SI Edition, new co-authors Chris Heil (Georgia Institute of Technology) and Przemyslaw Bogacki (Old Dominion University) partner with author Joel Hass to preserve the text's time-tested features while revisiting every word and figure with today's students in mind. |
You may like...
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,452
Discovery Miles 24 520
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,831
Discovery Miles 28 310
Asymptotic, Algebraic and Geometric…
Frank Nijhoff, Yang Shi, …
Hardcover
R4,245
Discovery Miles 42 450
Single Variable Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Finer Thermodynamic Formalism - Distance…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,106
Discovery Miles 41 060
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|