![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
This is the third Volume in a series of books devoted to the interdisciplinary area between mathematics and physics, all ema nating from the Advanced Study Institutes held in Istanbul in 1970, 1972 and 1977. We believe that physics and mathematics can develop best in harmony and in close communication and cooper ation with each other and are sometimes inseparable. With this goal in mind we tried to bring mathematicians and physicists together to talk and lecture to each other-this time in the area of nonlinear equations. The recent progress and surge of interest in nonlinear ordi nary and partial differential equations has been impressive. At the same time, novel and interesting physical applications mul tiply. There is a unifying element brought about by the same characteristic nonlinear behavior occurring in very widely differ ent physical situations, as in the case of "solitons," for exam ple. This Volume gives, we believe, a very good indication over all of this recent progress both in theory and applications, and over current research activity and problems. The 1977 Advanced Study Institute was sponsored by the NATO Scientific Affairs Division, The University of the Bosphorus and the Turkish Scientific and Technical Research Council. We are deeply grateful to these Institutions for their support, and to lecturers and participants for their hard work and enthusiasm which created an atmosphere of lively scientific discussions."
This book provides a systematic and comprehensive account of asymptotic sets and functions from which a broad and useful theory emerges in the areas of optimization and variational inequalities. A variety of motivations leads mathematicians to study questions about attainment of the infimum in a minimization problem and its stability, duality and minmax theorems, convexification of sets and functions, and maximal monotone maps. For each there is the central problem of handling unbounded situations. Such problems arise in theory but also within the development of numerical methods. The book focuses on the notions of asymptotic cones and associated asymptotic functions that provide a natural and unifying framework for the resolution of these types of problems. These notions have been used largely and traditionally in convex analysis, yet these concepts play a prominent and independent role in both convex and nonconvex analysis. This book covers convex and nonconvex problems, offering detailed analysis and techniques that go beyond traditional approaches. The book will serve as a useful reference and self-contained text for researchers and graduate students in the fields of modern optimization theory and nonlinear analysis.
Many problems for partial difference and integro-difference
equations can be written as difference equations in a normed space.
This book is devoted to linear and nonlinear difference equations
in a normed space. Our aim in this monograph is to initiate
systematic investigations of the global behavior of solutions of
difference equations in a normed space. Our primary concern is to
study the asymptotic stability of the equilibrium solution. We are
also interested in the existence of periodic and positive
solutions. There are many books dealing with the theory of ordinary
difference equations. However there are no books dealing
systematically with difference equations in a normed space. It is
our hope that this book will stimulate interest among
mathematicians to develop the stability theory of abstract
difference equations.
Modern achievements in the intensively developing field of applied mathematics as applied to physical chemistry are presented in this monograph. In particular, it proposes a new approach to extremal problem theory for nonlinear operators, differential-operator equations and inclusions, and for variational inequalities in Banach spaces. An axiomatic study of nonlinear maps (including multi-valued ones) is given, and the properties of resolving operators for systems, consisting of operator and differential-operator equations, are stated in nonlinear-map terms. The solvability conditions and the properties of extremal problem solutions are obtained, while their weak expansions and necessary conditions of optimality in variational inequality form are formulated. In addition. the monograph proposes regularization methods and approximation schemes. This book is adressed to scientists, graduates and undergraduates who are interested in nonlinear analysis, control theory, system analysis and differential equations.
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
This volume presents the proceedings of a colloquium inspired by the former President of the French Mathematical Society, Michel Herve. The aim was to promote the development of mathematics through applications. Since the ancient supports the new, it seemed appropriate to center the theoretical conferences on new subjects. Since the world is movement and creation, the theoretical conferences were planned on mechanics (movement) and bifurcation theory (creation). Five aspects of mechanics were to be presented, but, unfortunately, it has not been possible to include the statis- tical mechanics aspect. So that only four aspects are presented: Classical mechanics (Hamiltonian, Lagrangian, Poisson) (W.N. Tulczyjew, J .E. l-lhite, C.M. MarIe). - Quantum mechanics (in particular the passage from the classi- cal to the quantum approach and the problem of finding the explicit solution of Schrodinger's equation)(M. Cahen and S. Gutt, J. Leray). Fluid mechanics (meaning problems involving partial differ- ential equations. One of the speakers we hoped would attend the conference was in Japan at the time, however his lecture is presented in these proceedings.) (J.F. Pommaret, H.I-l. Shi) - Mathematical "information" theory (S. Guiasll) Traditional physical arguments are characterized by their great homogeneity, and mathematically expressed by the compactness prop- erty. In such cases, there is a kind of duality between locality and globality, which allows the use of the infinitesimal in global considerations.
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.
This text on measure theory with applications to partial differential equations covers general measure theory, Lebesgue spaces of real-valued and vector-valued functions, different notions of measurability for the latter, weak convergence of functions and measures, Radon and Young measures, capacity. A comprehensive discussion of applications to quasilinear parabolic and hyperbolic problems is provided.
The idea of organising a colloquium on turbulence emerged during the sabbatical leave of Prof. Arkady Tsinober in Zurich. New experimental observations and the insight gained through direct numerical simulations have been stimulating research in turbulence and are leading to the developments of new concepts. The organisers felt the necessity to bring together researchers who have contributed significantly to the advances in this field in a colloquium in which the current achievements and the future development in the theoretical, numerical and experimental approaches would be discussed. The main emphasis of the colloquium was put on discussions. These discussions led to an interesting and exciting exchange of ideas, but also involved its very laborious transcription onto paper. It was due to the personal efforts of Mrs. A. Vyskocil, Dr. N. Malik and Dr. X. Studerus that this work could be completed. The colloquium was held in the relaxed atmosphere of the Centro Stefano Franscini in Monte Verita near Ascona, a locality of exceptional natural beauty, which was put at our disposal by the Swiss Federal Institute of Technology. We would like to express our gratitude for this generous financial and logistic support, which contributed considerably to the success of the colloquium. Zurich, April 1993 Th. Dracos, A. Tsinober Participants Adrian, R. J. Kambe, T. Antonia, R. A. Kit,E. Aref, H. Landahl, M. T. Betchov, R. Lesieur, M. Bewersdorff, H. -W. Malik, N. Castaing, B. Moffatt, H. K. Chen, J. Moin,P. Dracos, T. Mullin, T. Frisch, U. Novikov, E. A.
In addition to expanding and clarifying a number of sections of the first edition, it generalizes the analysis that eliminates the noncausal pre-acceleration so that it applies to removing any pre-deceleration as well. It also introduces a robust power series solution to the equation of motion that produces an extremely accurate solution to problems such as the motion of electrons in uniform magnetic fields.
This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including the stabilization property of the damped wave equation and the null-controllability of the heat equation. All analysis is performed in the case of open sets in the Euclidean space; a second volume will extend this treatment to Riemannian manifolds. The first three chapters illustrate the derivation of Carleman estimates using pseudo-differential calculus with a large parameter. Continuation issues are then addressed, followed by a proof of the logarithmic stabilization of the damped wave equation by means of two alternative proofs of the resolvent estimate for the generator of a damped wave semigroup. The authors then discuss null-controllability of the heat equation, its equivalence with observability, and how the spectral inequality allows one to either construct a control function or prove the observability inequality. The final part of the book is devoted to the exposition of some necessary background material: the theory of distributions, invariance under change of variables, elliptic operators with Dirichlet data and associated semigroup, and some elements from functional analysis and semigroup theory.
"Still waters run deep." This proverb expresses exactly how a mathematician Akihito Uchiyama and his works were. He was not celebrated except in the field of harmonic analysis, and indeed he never wanted that. He suddenly passed away in summer of 1997 at the age of 48. However, nowadays his contributions to the fields of harmonic analysis and real analysis are permeating through various fields of analysis deep and wide. One could write several papers explaining his contributions and how they have been absorbed into these fields, developed, and used in further breakthroughs. Peter W. Jones (Professor of Yale University) says in his special contribution to this book that Uchiyama's decomposition of BMO functions is considered to be the Mount Everest of Hardy space theory. This book is based on the draft, which the author Akihito Uchiyama had completed by 1990. It deals with the theory of real Hardy spaces on the n-dimensional Euclidean space. Here the author explains scrupulously some of important results on Hardy spaces by real-variable methods, in particular, the atomic decomposition of elements in Hardy spaces and his constructive proof of the Fefferman-Stein decomposition of BMO functions into the sum of a bounded?function and Riesz transforms of bounded functions.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin', van Gu ik. 'g The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma. coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces.
This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including quantified unique continuation, logarithmic stabilization of the wave equation, and null-controllability of the heat equation. Where the first volume derived these estimates in regular open sets in Euclidean space and Dirichlet boundary conditions, here they are extended to Riemannian manifolds and more general boundary conditions. The book begins with the study of Lopatinskii-Sapiro boundary conditions for the Laplace-Beltrami operator, followed by derivation of Carleman estimates for this operator on Riemannian manifolds. Applications of Carleman estimates are explored next: quantified unique continuation issues, a proof of the logarithmic stabilization of the boundary-damped wave equation, and a spectral inequality with general boundary conditions to derive the null-controllability result for the heat equation. Two additional chapters consider some more advanced results on Carleman estimates. The final part of the book is devoted to exposition of some necessary background material: elements of differential and Riemannian geometry, and Sobolev spaces and Laplace problems on Riemannian manifolds.
This book examines abstract convex analysis and presents the results of recent research, specifically on parametrizations of Minkowski type dualities and of conjugations of type Lau. It explains the main concepts through cases and detailed proofs.
A colloquium on operator theory was held in Vienna, Austria, in March 2004, on the occasion of the retirement of Heinz Langer, a leading expert in operator theory and indefinite inner product spaces. The book contains fifteen refereed articles reporting on recent and original results in various areas of operator theory, all of them related with the work of Heinz Langer. The topics range from abstract spectral theory in Krein spaces to more concrete applications, such as boundary value problems, the study of orthogonal functions, or moment problems. The book closes with a historical survey paper.
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."
These proceedings of the international Conference "Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis," held at the Samarkand State University, Uzbekistan in September 2000 bring together fundamental research articles in the major areas of the numerated fields of analysis and mathematical physics. The book covers the following topics: theory of ill-posed problems inverse problems for differential equations boundary value problems for equations of mixed type integral geometry mathematical modelling and numerical methods in natural sciences
This book contains some contributions presented at the Applied Mathematics for Environmental Problems minisymposium during the International Congress on Industrial and Applied Mathematics (ICIAM) held July 15-19, 2019 in Valencia, Spain. The first paper addresses a simplified physical wildfire spread model, based on partial differential equations solved with finite element methods and integrated into a GIS to provide a useful and efficient tool. The second paper focuses on one of the causes of the unpredictable behavior of wildfire, fire-spotting, through a statistical approach. The third paper addresses low -level wind shear which represents one of the most relevant hazards during aircraft takeoff and landing. It presents an experimental wind shear alert system that is based on predicting wind velocities obtained from the Harmonie-Arome model. The last paper addresses the environmental impact of oil reservoirs. It presents high-order hybridizable discontinuous Galerkin formulation combined with high-order diagonally implicit Runge-Kutta schemes to solve one-phase and two-phase flow problems through porous media. All the contributions collected in this volume are interesting examples of how mathematics and numerical modelling are effective tools in the field of environmental problems.
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher¿s Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by email-supplements the text for readers who wish to explore harmonic function theory on a computer.
The book focuses on the nonlinear dynamics based on the vector fields with bivariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems based on bivariate vector fields. Such a book provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems on linear and nonlinear bivariate manifolds. Possible singular dynamics of the two-dimensional quadratic systems is discussed in detail. The dynamics of equilibriums and one-dimensional flows on bivariate manifolds are presented. Saddle-focus bifurcations are discussed, and switching bifurcations based on infinite-equilibriums are presented. Saddle-focus networks on bivariate manifolds are demonstrated. This book will serve as a reference book on dynamical systems and control for researchers, students and engineering in mathematics, mechanical and electrical engineering. |
![]() ![]() You may like...
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,643
Discovery Miles 26 430
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,484
Discovery Miles 34 840
|