![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the general microlocal semiclassical approach is developed, and microlocal and local semiclassical spectral asymptotics are derived.
This book is about the subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves around two main broad questions: What is the best smoothness of a given Banach space, and its structural consequences? How large is a supply of smooth functions in the sense of approximating continuous functions in the uniform topology, i.e. how does the Stone-Weierstrass theorem generalize into infinite dimension where measure and compactness are not available? The subject of infinite dimensional real higher smoothness is treated here for the first time in full detail, therefore this book may also serve as a reference book.
In his Retiring Presidential address, delivered before the Annual Meeting of The American Mathematical Society on December, 1948, the late Professor Einar Hille spoke on his recent results on the Lie theory of semigroups of linear transformations, . . * "So far only commutative operators have been considered and the product law . . . is the simplest possible. The non-commutative case has resisted numerous attacks in the past and it is only a few months ago that any headway was made with this problem. I shall have the pleasure of outlining the new theory here; it is a blend of the classical theory of Lie groups with the recent theory of one-parameter semigroups. " The list of references in the subsequent publication of Hille's address (Bull. Amer. Math *. Soc. 56 (1950)) includes pioneering papers of I. E. Segal, I. M. Gelfand, and K. Yosida. In the following three decades the subject grew tremendously in vitality, incorporating a number of different fields of mathematical analysis. Early papers of V. Bargmann, I. E. Segal, L. G~ding, Harish-Chandra, I. M. Singer, R. Langlands, B. Konstant, and E. Nelson developed the theoretical basis for later work in a variety of different applications: Mathematical physics, astronomy, partial differential equations, operator algebras, dynamical systems, geometry, and, most recently, stochastic filtering theory. As it turned out, of course, the Lie groups, rather than the semigroups, provided the focus of attention.
This book presents papers surrounding the extensive discussions that took place from the 'Variational Analysis and Aerospace Engineering' workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
This work can be recommended as an extensive course in superanalysis, the theory of functions of commuting and anticommuting variables. It follows the so-called functional superanalysis which was developed by J. Schwinger, B. De Witt, A. Rogers, V.S. Vladimirov and I.V. Volovich, Yu. Kobayashi and S. Nagamashi, M. Batchelor, U. Buzzo and R. Cianci and the present author. In this approach, superspace is defined as a set of points on which commuting and anticommuting coordinates are given. Thus functional superanalysis is a natural generalization of Newton's analysis (on real space) and strongly differs from the so-called algebraic analysis which has no functions of superpoints, and where functions' are just elements of Grassmann algebras. This volume is important for quantum physics in that it offers the possibility of extending the notion of space, and of operating on spaces which are described by noncommuting coordinates. These supercoordinates, which are described by an infinite number of ordinary real, complex or p-adic coordinates, are interpreted as creation or annihilation operators of quantum field theory. Subjects treated include differential calculus, including Cauchy-Riemann conditions, on superspaces over supercommutative Banach and topological superalgebras; integral calculus, including integration of differential forms; theory of distributions and linear partial differential equations with constant coefficients; calculus of pseudo-differential operators; analysis on infinite-dimensional superspaces over supercommutative Banach and topological supermodules; infinite-dimensional superdistributions and Feynman integrals with applications to superfield theory; noncommutativeprobabilities (central limit theorem); and non-Archimedean superanalysis. Audience: This volume will be of interest to researchers and postgraduate students whose work involves functional analysis, Feynman integration and distribution theory on infinite-dimensional (super)spaces and its applications to quantum physics, supersymmetry, superfield theory and supergravity.
An accessible and practical introduction to wavelets
The book presents advanced methods of integral calculus and optimization, the classical theory of ordinary and partial differential equations and systems of dynamical equations. It provides explicit solutions of linear and nonlinear differential equations, and implicit solutions with discrete approximations.The main changes of this second edition are: the addition of theoretical sections proving the existence and the unicity of the solutions for linear differential equations on real and complex spaces and for nonlinear differential equations defined by locally Lipschitz functions of the derivatives, as well as the approximations of nonlinear parabolic, elliptic, and hyperbolic equations with locally differentiable operators which allow to prove the existence of their solutions; furthermore, the behavior of the solutions of differential equations under small perturbations of the initial condition or of the differential operators is studied.
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.
"This book collects in one volume the author 's considerable results in the area of the summation of series and their representation in closed form, and details the techniques by which they have been obtained... the calculations are given in plenty of detail, and closely related work which has appeared in a variety of places is conveniently collected together." --The Australian Mathematical Society Gazette
Transcendental Curves in the Leibnizian Calculus analyzes a mathematical and philosophical conflict between classical and early modern mathematics. In the late 17th century, mathematics was at the brink of an identity crisis. For millennia, mathematical meaning and ontology had been anchored in geometrical constructions, as epitomized by Euclid's ruler and compass. As late as 1637, Descartes had placed himself squarely in this tradition when he justified his new technique of identifying curves with equations by means of certain curve-tracing instruments, thereby bringing together the ancient constructive tradition and modern algebraic methods in a satisfying marriage. But rapid advances in the new fields of infinitesimal calculus and mathematical mechanics soon ruined his grand synthesis. Descartes's scheme left out transcendental curves, i.e. curves with no polynomial equation, but in the course of these subsequent developments such curves emerged as indispensable. It was becoming harder and harder to juggle cutting-edge mathematics and ancient conceptions of its foundations at the same time, yet leading mathematicians, such as Leibniz felt compelled to do precisely this. The new mathematics fit more naturally an analytical conception of curves than a construction-based one, yet no one wanted to betray the latter, as this was seen as virtually tantamount to stop doing mathematics altogether. The credibility and authority of mathematics depended on it.
This self-contained book provides a basic foundation for students, practitioners, and researchers interested in some of the diverse new areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled and analyzed using a continuous flow of observations from land or satellite devices. Harmonic wavelet methods are introduced, as well as fast computational schemes and various numerical test examples.Topic and key features: - Comprehensive coverage of topics which, thus far, are only scattered in journal articles and conference proceedings- Important applications and developments for future satellite scenarios; new modelling techniques involving low-orbiting satellites- Multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling- Exercises at the end of each chapter and an appendix with hints to their solutions
The Stieltjes Integral provides a detailed, rigorous treatment of the Stieltjes integral. This integral is a generalization of the Riemann and Darboux integrals of calculus and undergraduate analysis, and can serve as a bridge between classical and modern analysis. It has applications in many areas, including number theory, statistics, physics, and finance. It begins with the Darboux integral, builds the theory of functions of bounded variation, and then develops the Stieltjes integral. It culminates with a proof of the Riesz representation theorem as an application of the Stieltjes integral. For much of the 20th century the Stjeltjes integral was a standard part of the undergraduate or beginning graduate student sequence in analysis. However, the typical mathematics curriculum has changed at many institutions, and the Stieltjes integral has become less common in undergraduate textbooks and analysis courses. This book seeks to address this by offering an accessible treatment of the subject to students who have had a one semester course in analysis. This book is suitable for a second semester course in analysis, and also for independent study or as the foundation for a senior thesis or Masters project. Features: Written to be rigorous without sacrificing readability. Accessible to undergraduate students who have taken a one-semester course on real analysis. Contains a large number of exercises from routine to challenging.
This book presents modern methods in functional analysis and operator theory along with their applications in recent research. The book also deals with the solvability of infinite systems of linear equations in various sequence spaces. It uses the classical sequence spaces, generalized Cesaro and difference operators to obtain calculations and simplifications of complicated spaces involving these operators. In order to make it self-contained, comprehensive and of interest to a larger mathematical community, the authors have presented necessary concepts with results for advanced research topics. This book is intended for graduate and postgraduate students, teachers and researchers as a basis for further research, advanced lectures and seminars.
This book covers the application of algebraic inequalities for reliability improvement and for uncertainty and risk reduction. It equips readers with powerful domain-independent methods for reducing risk based on algebraic inequalities and demonstrates the significant benefits derived from the application for risk and uncertainty reduction. Algebraic inequalities: * Provide a powerful reliability improvement, risk and uncertainty reduction method that transcends engineering and can be applied in various domains of human activity * Present an effective tool for dealing with deep uncertainty related to key reliability-critical parameters of systems and processes * Permit meaningful interpretations which link abstract inequalities with the real world * Offer a tool for determining tight bounds for the variation of risk-critical parameters and complying the design with these bounds to avoid failure * Allow optimising designs and processes by minimising the deviation of critical output parameters from their specified values and maximising their performance This book is primarily for engineering professionals and academic researchers in virtually all existing engineering disciplines.
This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky's theorem on periodic points, Thron's results on the convergence of certain real iterates, Shield's common fixed theorem for a commuting family of analytic functions and Bergweiler's existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski's theorem by Merrifield and Stein and Abian's proof of the equivalence of Bourbaki-Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward's theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka's proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory via a certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weierstrass preparation theorem, a Cauchy-Kowalevsky theorem for partial differential equations and the central limit theorem. It also provides a proof of the converse of the contraction principle due to Jachymski, a proof of fixed point theorem for continuous generalized contractions, a proof of Browder-Gohde-Kirk fixed point theorem, a proof of Stalling's generalization of Brouwer's theorem, examine Caristi's fixed point theorem, and highlights Kakutani's theorems on common fixed points and their applications.
Principles of Analysis: Measure, Integration, Functional Analysis, and Applications prepares readers for advanced courses in analysis, probability, harmonic analysis, and applied mathematics at the doctoral level. The book also helps them prepare for qualifying exams in real analysis. It is designed so that the reader or instructor may select topics suitable to their needs. The author presents the text in a clear and straightforward manner for the readers' benefit. At the same time, the text is a thorough and rigorous examination of the essentials of measure, integration and functional analysis. The book includes a wide variety of detailed topics and serves as a valuable reference and as an efficient and streamlined examination of advanced real analysis. The text is divided into four distinct sections: Part I develops the general theory of Lebesgue integration; Part II is organized as a course in functional analysis; Part III discusses various advanced topics, building on material covered in the previous parts; Part IV includes two appendices with proofs of the change of the variable theorem and a joint continuity theorem. Additionally, the theory of metric spaces and of general topological spaces are covered in detail in a preliminary chapter . Features: Contains direct and concise proofs with attention to detail Features a substantial variety of interesting and nontrivial examples Includes nearly 700 exercises ranging from routine to challenging with hints for the more difficult exercises Provides an eclectic set of special topics and applications About the Author: Hugo D. Junghenn is a professor of mathematics at The George Washington University. He has published numerous journal articles and is the author of several books, including Option Valuation: A First Course in Financial Mathematics and A Course in Real Analysis. His research interests include functional analysis, semigroups, and probability.
In 1821, the French mathematician Augustin-Louis Cauchy published Cours d'Analyse de L'Ecole Royale Polytechnique, a textbook designed to teach his students the basic theorems of calculus in as rigorous a way as possible. Cauchy was a pioneer of mathematical analysis, a branch of mathematics concerned with the idea of a limit, whether of a sequence or of a function. This book consists of 12 chapters that discuss real functions, infinitely small and large quantities, substitution groups, symmetrical functions, unknown variables, imaginary functions, and rational fractions in a recurrent series. It also provides formulas for solving various problems, such as converting the sine and cosine of a multiple polynomial arc and the Lagrange interpolation. Cauchy built on the work of Leibniz and Newton and is generally regarded as one of the greatest mathematicians in history. This is a reissue of one of his most important contributions.
In this article we shall use two special classes of reproducing kernel Hilbert spaces (which originate in the work of de Branges [dB) and de Branges-Rovnyak [dBRl), respectively) to solve matrix versions of a number of classical interpolation problems. Enroute we shall reinterpret de Branges' characterization of the first of these spaces, when it is finite dimensional, in terms of matrix equations of the Liapunov and Stein type and shall subsequently draw some general conclusions on rational m x m matrix valued functions which are "J unitary" a.e. on either the circle or the line. We shall also make some connections with the notation of displacement rank which has been introduced and extensively studied by Kailath and a number of his colleagues as well as the one used by Heinig and Rost [HR). The first of the two classes of spaces alluded to above is distinguished by a reproducing kernel of the special form K (>.) = J - U(>')JU(w)* (Ll) w Pw(>') , in which J is a constant m x m signature matrix and U is an m x m J inner matrix valued function over ~+, where ~+ is equal to either the open unit disc ID or the open upper half plane (1)+ and Pw(>') is defined in the table below.
Advanced Calculus: Theory and Practice, Second Edition offers a text for a one- or two-semester course on advanced calculus or analysis. The text improves students' problem-solving and proof-writing skills, familiarizes them with the historical development of calculus concepts, and helps them understand the connections among different topics. The book explains how various topics in calculus may seem unrelated but have common roots. Emphasizing historical perspectives, the text gives students a glimpse into the development of calculus and its ideas from the age of Newton and Leibniz to the twentieth century. Nearly 300 examples lead to important theorems. Features of the Second Edition: Improved Organization. Chapters are reorganized to address common preferences. Enhanced Coverage of Axiomatic Systems. A section is added to include Peano's system of axioms for the set of natural numbers and their use in developing the well-known properties of the set N. Expanded and Organized Exercise Collection. There are close to 1,000 new exercises, many of them with solutions or hints. Exercises are classified based on the level of difficulty. Computation-oriented exercises are paired and solutions or hints provided for the odd-numbered questions. Enrichment Material. Historical facts and biographies of over 60 mathematicians. Illustrations. Thirty-five new illustrations are added in order to guide students through examples or proofs. About the Author: John Srdjan Petrovic is a professor at Western Michigan University.
Understanding Real Analysis, Second Edition offers substantial coverage of foundational material and expands on the ideas of elementary calculus to develop a better understanding of crucial mathematical ideas. The text meets students at their current level and helps them develop a foundation in real analysis. The author brings definitions, proofs, examples and other mathematical tools together to show how they work to create unified theory. These helps students grasp the linguistic conventions of mathematics early in the text. The text allows the instructor to pace the course for students of different mathematical backgrounds. Key Features: Meets and aligns with various student backgrounds Pays explicit attention to basic formalities and technical language Contains varied problems and exercises Drives the narrative through questions
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.
Linear and Complex Analysis for Applications aims to unify various parts of mathematical analysis in an engaging manner and to provide a diverse and unusual collection of applications, both to other fields of mathematics and to physics and engineering. The book evolved from several of the author's teaching experiences, his research in complex analysis in several variables, and many conversations with friends and colleagues. It has three primary goals: to develop enough linear analysis and complex variable theory to prepare students in engineering or applied mathematics for advanced work, to unify many distinct and seemingly isolated topics, to show mathematics as both interesting and useful, especially via the juxtaposition of examples and theorems. The book realizes these goals by beginning with reviews of Linear Algebra, Complex Numbers, and topics from Calculus III. As the topics are being reviewed, new material is inserted to help the student develop skill in both computation and theory. The material on linear algebra includes infinite-dimensional examples arising from elementary calculus and differential equations. Line and surface integrals are computed both in the language of classical vector analysis and by using differential forms. Connections among the topics and applications appear throughout the book. The text weaves abstract mathematics, routine computational problems, and applications into a coherent whole, whose unifying theme is linear systems. It includes many unusual examples and contains more than 450 exercises.
This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)" |
You may like...
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
|