![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The book focuses on the nonlinear dynamics based on the vector fields with bivariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems based on bivariate vector fields. Such a book provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems on linear and nonlinear bivariate manifolds. Possible singular dynamics of the two-dimensional quadratic systems is discussed in detail. The dynamics of equilibriums and one-dimensional flows on bivariate manifolds are presented. Saddle-focus bifurcations are discussed, and switching bifurcations based on infinite-equilibriums are presented. Saddle-focus networks on bivariate manifolds are demonstrated. This book will serve as a reference book on dynamical systems and control for researchers, students and engineering in mathematics, mechanical and electrical engineering.
Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.
With this fun romp through the world of equations we encounter in our everyday lives, you'll find yourself flipping through the stories of fifty-two formulas faster than a deck of cards. John M. Henshaw's intriguing true accounts, each inspired by a different mathematical equation, are both succinct and easy to read. His tales come from the spheres of sports, business, history, the arts, science, and technology. Anecdotes about famous equations, like E=mc 2, appear alongside tales of not-so-famous-but equally fascinating-equations, such as the one used to determine the SPF number for sunscreen. Drawn from the breadth of human endeavor, Henshaw's stories demonstrate the power and utility of math. He entertains us by exploring the ways that equations can be used to explain, among other things, Ponzi schemes, the placebo effect, "dog years," IQ, the wave mechanics of tsunamis, the troubled modern beekeeping industry, and the Challenger disaster. Smartly conceived and fast paced, his book offers something for anyone curious about math and its impacts.
Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely Integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the eXisting classificatIOn schemes.
Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here - on the occasion of his 70th birthday - are written by world-renowned researchers and celebrate his decades of outstanding achievements.
The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard's theorems, Riemann-Zeta function, Dirichlet theorem, gamma function and harmonic functions.
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: * Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory * Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases * Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics * Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.
From the preface of the author: ..".I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."
Is the exponential function computable? Are union and intersection of closed subsets of the real plane computable? Are differentiation and integration computable operators? Is zero finding for complex polynomials computable? Is the Mandelbrot set decidable? And in case of computability, what is the computational complexity? Computable analysis supplies exact definitions for these and many other similar questions and tries to solve them. - Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid basis for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.
This book is devoted to integration, one of the two main operations in calculus. In Part 1, the definition of the integral of a one-variable function is different (not essentially, but rather methodically) from traditional definitions of Riemann or Lebesgue integrals. Such an approach allows us, on the one hand, to quickly develop the practical skills of integration as well as, on the other hand, in Part 2, to pass naturally to the more general Lebesgue integral. Based on the latter, in Part 2, the author develops a theory of integration for functions of several variables. In Part 3, within the same methodological scheme, the author presents the elements of theory of integration in an abstract space equipped with a measure; we cannot do without this in functional analysis, probability theory, etc. The majority of chapters are complemented with problems, mostly of the theoretical type. The book is mainly devoted to students of mathematics and related specialities. However, Part 1 can be successfully used by any student as a simple introduction to integration calculus.
This volume contains the proceedings of the Arizona School of Analysis and Mathematical Physics, held from March 5-9, 2018, at the University of Arizona, Tucson, Arizona. A main goal of this school was to introduce graduate students and postdocs to exciting topics of current research that are both influenced by physical intuition and require the use of cutting-edge mathematics. The articles in this volume reflect recent progress and innovative techniques developed within mathematical physics. Two works investigate spectral gaps of quantum spin systems. Specifically, Abdul-Rahman, Lemm, Lucia, Nachtergaele, and Young consider decorated AKLT models, and Lemm demonstrates a finite-size criterion for $D$-dimensional models. Bachmann, De Roeck, and Fraas summarize a recent proof of the adiabatic theorem, while Bachmann, Bols, De Roeck, and Fraas discuss linear response for interacting Hall insulators. Models on general graphs are the topic of the articles by Fischbacher, on higher spin XXZ, and by Latushkin and Sukhtaiev, on an index theorem for Schrodinger operators. Probabilistic applications are the focus of the articles by DeMuse and Yin, on exponential random graphs, by Saenz, on KPZ universality, and by Stolz, on disordered quantum spin chains. In all, the diversity represented here is a testament to the enthusiasm this rich field of mathematical physics generates.
The book serves as a primary textbook of partial differential equations (PDEs), with due attention to their importance to various physical and engineering phenomena. The book focuses on maintaining a balance between the mathematical expressions used and the significance they hold in the context of some physical problem. The book has wider outreach as it covers topics relevant to many different applications of ordinary differential equations (ODEs), PDEs, Fourier series, integral transforms, and applications. It also discusses applications of analytical and geometric methods to solve some fundamental PDE models of physical phenomena such as transport of mass, momentum, and energy. As far as possible, historical notes are added for most important developments in science and engineering. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
These Proceedings contain selected papers by the speakers invited to the Seminar on Deformations, organized in 1985/87 by Julian tawryno- wicz (t6dz), whose most fruitful parts took place in 1986 in Lublin during the 3rd Finnish-Polish Summer School in Complex Analysis [in cooperation with O. Martio (JyvliskyHl)] held simultaneously with the 9th Conference on Analytic Function in Poland [in cooperation with S. Dimiev (Sofia), P. Dolbeault (Paris), K. Spallek (Bochum), and E. Vesen- tini (Pisa)]. The Lublin session of the Seminar, organized jointly with S. Dimiev and K. Spallek, was preceded by a session organized by them at Druzhba (near Varna) in 1985 and followed by a similar session at Druzhba in 1987. The collection contains 31 papers connected with deformations of mathematical structures in the context of complex analysis with physi- cal applications: (quasi)conformal deformation uniformization, potential theory, several complex variables, geometric algebra, algebraic ge- ometry, foliations, Hurwitz pairs, and Hermitian geometry. They are research papers in final form: no version of them will be submitted for publication elsewhere. In contrast to the previous volume (Seminar on Deformations, Proceedings, L6dz-WarsaUJ 1982/84, ed. by J. -i:.awrynowicz, Lecture Notes in Math. 1165, Springer, Berlin-Heidelberg- -New York-Tokyo 1985, X + 331 pp.) open problems are not published as separate research notes, but are included in the papers.
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.
This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski's equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic functions, and intersection cohomology. Other chapters bring in new subjects, such as the Thom-Mather theory for maps, characteristic classes for singular varieties, mixed Hodge structures, residues in complex analytic varieties, nearby and vanishing cycles, and more. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Tecnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
The primary aim of this book is to present notions of convex analysis which constitute the basic underlying structure of argumentation in economic theory and which are common to optimization problems encountered in many applications. The intended readers are graduate students, and specialists of mathematical programming whose research fields are applied mathematics and economics. The text consists of a systematic development in eight chapters, with guided exercises containing sometimes significant and useful additional results. The book is appropriate as a class text, or for self-study.
The main purpose of developing stability theory is to examine
dynamic responses of a system to disturbances as the time
approaches infinity. It has been and still is the object of intense
investigations due to its intrinsic interest and its relevance to
all practical systems in engineering, finance, natural science and
social science. This monograph provides some state-of-the-art
expositions of major advances in fundamental stability theories and
methods for dynamic systems of ODE and DDE types and in limit
cycle, normal form and Hopf bifurcation control of nonlinear
dynamic systems.
"Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables" builds upon the basic ideas and techniques of differential and integral calculus for functions of several variables, as outlined in an earlier introductory volume. The presentation is largely focused on the foundations of measure and integration theory. The book begins with a discussion of the geometry of Hilbert spaces, convex functions and domains, and differential forms, particularly k-forms. The exposition continues with an introduction to the calculus of variations with applications to geometric optics and mechanics.The authorsconclude with the study of measure and integration theory - Borel, Radon, and Hausdorff measures and the derivation of measures. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This work may be used as a supplementary text in the classroom or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. One of the key strengths of this presentation, along with the other four books on analysis published by the authors, is the motivation for understanding the subject through examples, observations, exercises, and illustrations."
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. The ergodic theory of smooth dynamical systems is treated. Numerous examples are presented carefully along with the ideas underlying the most important results. Moreover, the book deals with the dynamical systems of statistical mechanics, and with various kinetic equations. For this second enlarged and revised edition, published as Mathematical Physics I, EMS 100, two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations were added. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it.
* Written in a fluid and accessible style, replete with exercises; ideal for undergraduate courses * Suitable for students of land surveying and natural science, as well as professionals, but also for map amateurs
This book is concerned with the role played by modules of
infinite length when dealing with problems in the representation
theory of groups and algebras, but also in topology and geometry;
it shows the intriguing interplay between finite and infinite
length modules.
The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations."
Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science. |
![]() ![]() You may like...
Asymptotic, Algebraic and Geometric…
Frank Nijhoff, Yang Shi, …
Hardcover
R4,365
Discovery Miles 43 650
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,484
Discovery Miles 34 840
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Single Variable Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
|