![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject."
Many fundamental theories of modern physics can be considered as descriptions of dynamical systems subjected to constraints. The study of these constrained dynamical systems, and in particular the problems of formulating them as quantum systems, has many profound links with geometry. These links were explored in the Symposium on Geometry and Gravity held at the Newton Institute in 1994. This book, which arose from a conference held during that symposium, is a collection of papers devoted to problems such as Chern-Simons theory, sigma-models, gauge invariance and loop quantization, general relativity and the notion of time, and quantum gravity. They present a lively, varied and topical perspective on this important branch of theoretical physics from some of the leading authorities in the subject, and will be of value to theoretical physicists and mathematicians interested in the latest advances.
This is the only book which encompassing the theories of Fourier transforms, wavelet transforms and their chronological geometrical ramifications including polar wavelet transforms, ridgelet transforms, curvelet transforms, contourlet transforms, shearlet transforms, bendlet transforms, taylorlet transforms and so on. There is an urgent need for a text that explains the fundamental concepts underlying the theory of wavelet transforms together with the chronological developments in research to the most contemporary ramifications in a flavor accessible to graduate students and researchers. The need for a contemporary coverage of wavelet transforms in a new textbook at the graduate level, encompassing the current research, is there. This book will address this need.
Elliptic functions parametrize elliptic curves, and the intermingling of the analytic and algebraic-arithmetic theory has been at the center of mathematics since the early part of the nineteenth century. The book is divided into four parts. In the first, Lang presents the general analytic theory starting from scratch. Most of this can be read by a student with a basic knowledge of complex analysis. The next part treats complex multiplication, including a discussion of Deuring's theory of l-adic and p-adic representations, and elliptic curves with singular invariants. Part three covers curves with non-integral invariants, and applies the Tate parametrization to give Serre's results on division points. The last part covers theta functions and the Kronecker Limit Formula. Also included is an appendix by Tate on algebraic formulas in arbitrary charactistic.
The purpose of this volume is to explore new bridges between different research areas involved in the theory and applications of the fractional calculus. In particular, it collects scientific and original contributions to the development of the theory of nonlocal and fractional operators. Special attention is given to the applications in mathematical physics, as well as in probability. Numerical methods aimed to the solution of problems with fractional differential equations are also treated in the book. The contributions have been presented during the international workshop "Nonlocal and Fractional Operators", held in Sapienza University of Rome, in April 2019, and dedicated to the retirement of Prof. Renato Spigler (University Roma Tre). Therefore we also wish to dedicate this volume to this occasion, in order to celebrate his scientific contributions in the field of numerical analysis and fractional calculus. The book is suitable for mathematicians, physicists and applied scientists interested in the various aspects of fractional calculus.
In the modern study of Hilbert space operators there has been an increasingly subtle involvement with analytic function theory. This is evident in the analysis of subnormal operators, Toeplitz operators and Hankel operators, for example. On the other hand the operator theoretic viewpoint of interpolation by analytic functions is a powerful one. There has been significant activity in recent years, within these enriching interactions, and the time seemed right for an overview ot the main lines of development. The Advanced Study Institute 'Operators and Function Theory' in Lancaster, 1984, was devoted to this, and this book contains ex panded versions (and one contraction) of the main lecture prog ramme. These varied articles, by prominent researchers, include, for example, a survey of recent results on subnormal operators, recent work of Soviet mathematicians on Hankel and Toeplitz operators, expositions of the decomposition theory and inter polation theory for Bergman, Besov and Bloch spaces, with applic ations for special operators, the Krein space approach to inter polation problems, ** and much more. It is hoped that these proceedings will bring all this lively mathematics to a wider audience. Sincere thanks are due to the Scientific Committee of the North Atlantic Treaty Organisation for the generous support that made the institute possible, and to the London Mathematical Society and the British Council for important additional support. Warm thanks also go to Barry Johnson and the L.M.S. for early guidance, and to my colleague Graham Jameson for much organisational support.
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hormander function spaces. This theory was constructed by the authors in a number of papers published in 2005 2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a reader-friendly style. The complete proofs of theorems are given. This monograph is intended for a wide range of mathematicians whose research interests concern with mathematical analysis and differential equations."
This book offers a self-contained introduction to the theory of Lyapunov exponents and its applications, mainly in connection with hyperbolicity, ergodic theory and multifractal analysis. It discusses the foundations and some of the main results and main techniques in the area, while also highlighting selected topics of current research interest. With the exception of a few basic results from ergodic theory and the thermodynamic formalism, all the results presented include detailed proofs. The book is intended for all researchers and graduate students specializing in dynamical systems who are looking for a comprehensive overview of the foundations of the theory and a sample of its applications.
The book is a revised and updated version of the lectures given by the author at the University of Timi oara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen- eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois- son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan- ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton- Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra~iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc- tion given by Kostant and Souriau around 1964.
Generating functions, one of the most important tools in enumerative combinatorics, are a bridge between discrete mathematics and continuous analysis. Generating functions have numerous applications in mathematics, especially in: Combinatorics; Probability Theory; Statistics; Theory of Markov Chains; and Number Theory. One of the most important and relevant recent applications of combinatorics lies in the development of Internet search engines, whose incredible capabilities dazzle even the mathematically trained user.
Paul Erdos was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments."
This volume comprises a set of research papers that together will provide an up-to-date survey of the current state of the art in numerical analysis. The contributions are based on talks given at a conference in honour of Jim Wilkinson, one of the foremost pioneers in numerical analysis. The contributors were all his colleagues and collaborators and are leading figures in their respective fields. The breadth of Jim Wilkinson's research is reflected in the main themes covered: linear algebra, error analysis and computer arithmetic, algorithms, and mathematical software. Particular topics covered include analysis of the Lanczos algorithm, determining the nearest defective matrix to a given one, QR-factorizations, error propagation models, parameter estimation problems, sparse systems, and shape-preserving splines. As a whole the volume reflects the current vitality of numerical analysis and will prove an invaluable reference for all numerical analysts.
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.
Features Discusses real-world problems, theory, and applications. Covers new developments and advances in the various areas of nonlinear dynamics, signal processing and chaos. Suitable to teach Master's and/or Ph.D. level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences.
This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research. The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian Leonard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.
This book is to be a new edition of Applied Analysis. Several fundamental materials of applied and theoretical sciences are added, which are needed by the current society, as well as recent developments in pure and applied mathematics. New materials in the basic level are the mathematical modelling using ODEs in applied sciences, elements in Riemann geometry in accordance with tensor analysis used in continuum mechanics, combining engineering and modern mathematics, detailed description of optimization, and real analysis used in the recent study of PDEs. Those in the advance level are the integration of ODEs, inverse Strum Liouville problems, interface vanishing of the Maxwell system, method of gradient inequality, diffusion geometry, mathematical oncology. Several descriptions on the analysis of Smoluchowski-Poisson equation in two space dimension are corrected and extended, to ensure quantized blowup mechanism of this model, particularly, the residual vanishing both in blowup solution in finite time with possible collision of sub-collapses and blowup solutions in infinite time without it.
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II and III are applied to the Schroedinger and Dirac operators in non-smooth settings and in higher dimensions.
The first COVID-19 case in the US was reported on January 20, 2020. As the first cases were being reported in the US, Washington State became a reliable source not just for hospital bed demand based on incidence and community spread but also for modeling the impact of skilled nursing facilities and assisted living facilities on hospital bed demand. Various hospital bed demand modeling efforts began in earnest across the United States in university settings, private consulting and health systems. Nationally, the University of Washington Institute of Health Metrics and Evaluation seemed to gain a footing and was adopted as a source for many states for its ability to predict the epidemiological curve by state, including the peak. This book therefore addresses a compelling need for documenting what has been learned by the academic and professional healthcare communities in healthcare analytics and disaster preparedness to this point in the pandemic. What is clear, at least from the US perspective, is that the healthcare system was unprepared and uncoordinated from an analytics perspective. Learning from this experience will only better prepare all healthcare systems and leaders for future crisis. Both prospectively, from a modeling perspective and retrospectively from a root cause analysis perspective, analytics provide clarity and help explain causation and data relationships. A more structured approach to teaching healthcare analytics to students, using the pandemic and the rich dataset that has been developed, provides a ready-made case study from which to learn and inform disaster planning and preparedness. The pandemic has strained the healthcare and public health systems. Researchers and practitioners must learn from this crisis to better prepare our processes for future pandemics, at minimum. Finally, government officials and policy makers can use this data to decide how best to assist the healthcare and public health systems in crisis.
The fundamental contributions made by the late Victor Lomonosov in several areas of analysis are revisited in this book, in particular, by presenting new results and future directions from world-recognized specialists in the field. The invariant subspace problem, Burnside's theorem, and the Bishop-Phelps theorem are discussed in detail. This volume is an essential reference to both researchers and graduate students in mathematical analysis.
An Image Processing Tour of College Mathematics aims to provide meaningful context for reviewing key topics of the college mathematics curriculum, to help students gain confidence in using concepts and techniques of applied mathematics, to increase student awareness of recent developments in mathematical sciences, and to help students prepare for graduate studies. The topics covered include a library of elementary functions, basic concepts of descriptive statistics, probability distributions of functions of random variables, definitions and concepts behind first- and second-order derivatives, most concepts and techniques of traditional linear algebra courses, an introduction to Fourier analysis, and a variety of discrete wavelet transforms - all of that in the context of digital image processing. Features Pre-calculus material and basic concepts of descriptive statistics are reviewed in the context of image processing in the spatial domain. Key concepts of linear algebra are reviewed both in the context of fundamental operations with digital images and in the more advanced context of discrete wavelet transforms. Some of the key concepts of probability theory are reviewed in the context of image equalization and histogram matching. The convolution operation is introduced painlessly and naturally in the context of naive filtering for denoising and is subsequently used for edge detection and image restoration. An accessible elementary introduction to Fourier analysis is provided in the context of image restoration. Discrete wavelet transforms are introduced in the context of image compression, and the readers become more aware of some of the recent developments in applied mathematics. This text helps students of mathematics ease their way into mastering the basics of scientific computer programming.
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include * Diagrammatic illustrations that encourage readers to think geometrically * Focus on systematic strategy to generate ideas for the proofs of theorems * A wealth of remarks, observations along with a variety of exercises * Historical notes and brief biographies appearing throughout the text |
You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,380
Discovery Miles 23 800
|