![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book integrates analytical and digital solutions through Alternative Transients Program (ATP) software, recognized for its use all over the world in academia and in the electric power industry, utilizing a didactic approach appropriate for graduate students and industry professionals alike. This book presents an approach to solving singular-function differential equations representing the transient and steady-state dynamics of a circuit in a structured manner, and without the need for physical reasoning to set initial conditions to zero plus (0+). It also provides, for each problem presented, the exact analytical solution as well as the corresponding digital solution through a computer program based on the Electromagnetics Transients Program (EMTP). Of interest to undergraduate and graduate students, as well as industry practitioners, this book fills the gap between classic works in the field of electrical circuits and more advanced works in the field of transients in electrical power systems, facilitating a full understanding of digital and analytical modeling and solution of transients in basic circuits.
During the days 14-18 of October 1991, we had the pleasure of attending a most interesting Conference on New Developments in Partial Differential Equations and Applications to Mathematical Physics in Ferrarra. The Conference was organized within the Scientific Program celebrating the six hundredth birthday of the University of Ferrarra and, after the many stimulating lectures and fruitful discussions, we may certainly conclude, together with the numerous participants, that it has represented a big success. The Conference would not have been possible without the financial support of several sources. In this respect, we are particularly grateful to the Comitato Organizzatore del VI Centenario, the University of Ferrarra in the Office of the Rector, Professor Antonio Rossi, the Consiglio Nationale delle Ricerche, and the Department of Mathematics of the University of Ferrarra. We should like to thank all of the partlClpants and the speakers, and we are especially grateful to those who have contributed to the present volume. G. Buttazzo, University of Pisa G.P. Galdi, University of Ferrarra L. Zanghirati, University of Ferrarra Ferrarra, May 11 th, 1992 v CONTENTS INVITED LECTURES Liapunov Functionals and Qualitative Behaviour of the Solution to the Nonlinear Enskog Equation .................................................................................. .
Dedicated to Jacques Carmona, an expert in noncommutative harmonic analysis, the volume presents excellent invited/refereed articles by top notch mathematicians. Topics cover general Lie theory, reductive Lie groups, harmonic analysis and the Langlands program, automorphic forms, and Kontsevich quantization. Good text for researchers and grad students in representation theory.
The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.
The Stieltjes Integral provides a detailed, rigorous treatment of the Stieltjes integral. This integral is a generalization of the Riemann and Darboux integrals of calculus and undergraduate analysis, and can serve as a bridge between classical and modern analysis. It has applications in many areas, including number theory, statistics, physics, and finance. It begins with the Darboux integral, builds the theory of functions of bounded variation, and then develops the Stieltjes integral. It culminates with a proof of the Riesz representation theorem as an application of the Stieltjes integral. For much of the 20th century the Stjeltjes integral was a standard part of the undergraduate or beginning graduate student sequence in analysis. However, the typical mathematics curriculum has changed at many institutions, and the Stieltjes integral has become less common in undergraduate textbooks and analysis courses. This book seeks to address this by offering an accessible treatment of the subject to students who have had a one semester course in analysis. This book is suitable for a second semester course in analysis, and also for independent study or as the foundation for a senior thesis or Masters project. Features: Written to be rigorous without sacrificing readability. Accessible to undergraduate students who have taken a one-semester course on real analysis. Contains a large number of exercises from routine to challenging.
One service mathematics has rendered the "Et moi, .... si j'a\'ait su comment en revenir, human race. It has put common sense back je n'y scrais point alit: Jules Verne where it belongs, on the topmost shelf next to the dusty canister labc\led 'discarded non The series is divergent; therefore we may be sense'. Eric T. 8c\l able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Malaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In 1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
Linear and Complex Analysis for Applications aims to unify various parts of mathematical analysis in an engaging manner and to provide a diverse and unusual collection of applications, both to other fields of mathematics and to physics and engineering. The book evolved from several of the author's teaching experiences, his research in complex analysis in several variables, and many conversations with friends and colleagues. It has three primary goals: to develop enough linear analysis and complex variable theory to prepare students in engineering or applied mathematics for advanced work, to unify many distinct and seemingly isolated topics, to show mathematics as both interesting and useful, especially via the juxtaposition of examples and theorems. The book realizes these goals by beginning with reviews of Linear Algebra, Complex Numbers, and topics from Calculus III. As the topics are being reviewed, new material is inserted to help the student develop skill in both computation and theory. The material on linear algebra includes infinite-dimensional examples arising from elementary calculus and differential equations. Line and surface integrals are computed both in the language of classical vector analysis and by using differential forms. Connections among the topics and applications appear throughout the book. The text weaves abstract mathematics, routine computational problems, and applications into a coherent whole, whose unifying theme is linear systems. It includes many unusual examples and contains more than 450 exercises.
This proceedings volume contains peer-reviewed, selected papers and surveys presented at the conference Spectral Theory and Mathematical Physics (STMP) 2018 which was held in Santiago, Chile, at the Pontifical Catholic University of Chile in December 2018. The original works gathered in this volume reveal the state of the art in the area and reflect the intense cooperation between young researchers in spectral theoryand mathematical physics and established specialists in this field. The list of topics covered includes: eigenvalues and resonances for quantum Hamiltonians; spectral shift function and quantum scattering; spectral properties of random operators; magnetic quantum Hamiltonians; microlocal analysis and its applications in mathematical physics. This volume can be of interest both to senior researchers and graduate students pursuing new research topics in Mathematical Physics.
This book focuses on the fusion of wavelets and Walsh analysis, which involves non-trigonometric function series (or Walsh-Fourier series). The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar-Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book's main theme. Based on lectures that the authors presented at several international conferences, the notions and concepts introduced in this interdisciplinary book can be applied to any situation where wavelets and their variants are used. Most of the applications of wavelet analysis and Walsh analysis can be tried for newly constructed wavelets. Given its breadth of coverage, the book offers a valuable resource for theoreticians and those applying mathematics in diverse areas. It is especially intended for graduate students of mathematics and engineering and researchers interested in applied analysis.
This book uses a mathematical approach to deriving the laws of science and technology, based upon the concept of Fisher information. The approach that follows from these ideas is called the principle of Extreme Physical Information (EPI). The authors show how to use EPI to determine the theoretical input/output laws of unknown systems. Will benefit readers whose math skill is at the level of an undergraduate science or engineering degree.
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II, III and IV are applied to multiparticle quantum theory (asymptotics of the ground state energy and related problems), and to miscellaneous spectral problems.
The purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces.
Content and Aims of this Book Earlier drafts of the manuscript of this book (James A. Boa was then coau thor) contained discussions of many methods and examples of singular perturba tion problems. The ambitious plans of covering a large number of topics were later abandoned in favor of the present goal: a thorough discussion of selected ideas and techniques used in the method of matched asymptotic expansions. Thus many problems and methods are not covered here: the method of av eraging and the related method of multiple scales are mentioned mainly to give reasons why they are not discussed further. Examples which required too sophis ticated and involved calculations, or advanced knowledge of a special field, are not treated; for instance, to the author's regret some very interesting applications to fluid mechanics had to be omitted for this reason. Artificial mathematical examples introduced to show some exotic or unexpected behavior are omitted, except when they are analytically simple and are needed to illustrate mathematical phenomena important for realistic problems. Problems of numerical analysis are not discussed."
This is the only book which encompassing the theories of Fourier transforms, wavelet transforms and their chronological geometrical ramifications including polar wavelet transforms, ridgelet transforms, curvelet transforms, contourlet transforms, shearlet transforms, bendlet transforms, taylorlet transforms and so on. There is an urgent need for a text that explains the fundamental concepts underlying the theory of wavelet transforms together with the chronological developments in research to the most contemporary ramifications in a flavor accessible to graduate students and researchers. The need for a contemporary coverage of wavelet transforms in a new textbook at the graduate level, encompassing the current research, is there. This book will address this need.
The De Gruyter Studies in Mathematical Physics are devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply and develop further, with sufficient rigor, mathematical methods to given problems in physics. For this reason, works with a few authors are preferred over edited volumes. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels.
The scientific field of data analysis is constantly expanding due to the rapid growth of the computer industry and the wide applicability of computational and algorithmic techniques, in conjunction with new advances in statistical, stochastic and analytic tools. There is a constant need for new, high-quality publications to cover the recent advances in all fields of science and engineering.This book is a collective work by a number of leading scientists, computer experts, analysts, engineers, mathematicians, probabilists and statisticians who have been working at the forefront of data analysis and related applications. The chapters of this collaborative work represent a cross-section of current concerns, developments and research interests in the above scientific areas. The collected material has been divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with related applications.
This book presents an exciting collection of contributions based on the workshop "Bringing Maths to Life" held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.
The conference has an interdisciplinary focus and aims to bring together scientists - mathematicians, electrical engineers, computer scientists, and physicists, from universities and industry - to have in-depth discussions of the latest scientific results in Computational Science and Engineering relevant to Electrical Engineering and to stimulate and inspire active participation of young researchers.
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
This volume contains the proceedings of the Arizona School of Analysis and Mathematical Physics, held from March 5-9, 2018, at the University of Arizona, Tucson, Arizona. A main goal of this school was to introduce graduate students and postdocs to exciting topics of current research that are both influenced by physical intuition and require the use of cutting-edge mathematics. The articles in this volume reflect recent progress and innovative techniques developed within mathematical physics. Two works investigate spectral gaps of quantum spin systems. Specifically, Abdul-Rahman, Lemm, Lucia, Nachtergaele, and Young consider decorated AKLT models, and Lemm demonstrates a finite-size criterion for $D$-dimensional models. Bachmann, De Roeck, and Fraas summarize a recent proof of the adiabatic theorem, while Bachmann, Bols, De Roeck, and Fraas discuss linear response for interacting Hall insulators. Models on general graphs are the topic of the articles by Fischbacher, on higher spin XXZ, and by Latushkin and Sukhtaiev, on an index theorem for Schrodinger operators. Probabilistic applications are the focus of the articles by DeMuse and Yin, on exponential random graphs, by Saenz, on KPZ universality, and by Stolz, on disordered quantum spin chains. In all, the diversity represented here is a testament to the enthusiasm this rich field of mathematical physics generates.
The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike. Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering. The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applications. In contrast, competitive model, signal or knowledge based techniques showed their potential only whenever cost-benefit economics have justified the required effort in developing applications. "Statistical Monitoring of Complex Multivariate Processes" presents recent advances in statistics based process monitoring, explaining how these processes can now be used in areas such as mechanical and manufacturing engineering for example, in addition to the traditional chemical industry. This book: Contains a detailed theoretical background of the component technology.Brings together a large body of work to address the field's drawbacks, and develops methods for their improvement.Details cross-disciplinary utilization, exemplified by examples in chemical, mechanical and manufacturing engineering.Presents real life industrial applications, outlining deficiencies in the methodology and how to address them.Includes numerous examples, tutorial questions and homework assignments in the form of individual and team-based projects, to enhance the learning experience.Features a supplementary website including Matlab algorithms and data sets. This book provides a timely reference text to the rapidly evolving area of multivariate statistical analysis for academics, advanced level students, and practitioners alike.
This book explains in detail the generalized Fourier series technique for the approximate solution of a mathematical model governed by a linear elliptic partial differential equation or system with constant coefficients. The power, sophistication, and adaptability of the method are illustrated in application to the theory of plates with transverse shear deformation, chosen because of its complexity and special features. In a clear and accessible style, the authors show how the building blocks of the method are developed, and comment on the advantages of this procedure over other numerical approaches. An extensive discussion of the computational algorithms is presented, which encompasses their structure, operation, and accuracy in relation to several appropriately selected examples of classical boundary value problems in both finite and infinite domains. The systematic description of the technique, complemented by explanations of the use of the underlying software, will help the readers create their own codes to find approximate solutions to other similar models. The work is aimed at a diverse readership, including advanced undergraduates, graduate students, general scientific researchers, and engineers. The book strikes a good balance between the theoretical results and the use of appropriate numerical applications. The first chapter gives a detailed presentation of the differential equations of the mathematical model, and of the associated boundary value problems with Dirichlet, Neumann, and Robin conditions. The second chapter presents the fundamentals of generalized Fourier series, and some appropriate techniques for orthonormalizing a complete set of functions in a Hilbert space. Each of the remaining six chapters deals with one of the combinations of domain-type (interior or exterior) and nature of the prescribed conditions on the boundary. The appendices are designed to give insight into some of the computational issues that arise from the use of the numerical methods described in the book. Readers may also want to reference the authors' other books Mathematical Methods for Elastic Plates, ISBN: 978-1-4471-6433-3 and Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation, ISBN: 978-3-319-26307-6.
The first COVID-19 case in the US was reported on January 20, 2020. As the first cases were being reported in the US, Washington State became a reliable source not just for hospital bed demand based on incidence and community spread but also for modeling the impact of skilled nursing facilities and assisted living facilities on hospital bed demand. Various hospital bed demand modeling efforts began in earnest across the United States in university settings, private consulting and health systems. Nationally, the University of Washington Institute of Health Metrics and Evaluation seemed to gain a footing and was adopted as a source for many states for its ability to predict the epidemiological curve by state, including the peak. This book therefore addresses a compelling need for documenting what has been learned by the academic and professional healthcare communities in healthcare analytics and disaster preparedness to this point in the pandemic. What is clear, at least from the US perspective, is that the healthcare system was unprepared and uncoordinated from an analytics perspective. Learning from this experience will only better prepare all healthcare systems and leaders for future crisis. Both prospectively, from a modeling perspective and retrospectively from a root cause analysis perspective, analytics provide clarity and help explain causation and data relationships. A more structured approach to teaching healthcare analytics to students, using the pandemic and the rich dataset that has been developed, provides a ready-made case study from which to learn and inform disaster planning and preparedness. The pandemic has strained the healthcare and public health systems. Researchers and practitioners must learn from this crisis to better prepare our processes for future pandemics, at minimum. Finally, government officials and policy makers can use this data to decide how best to assist the healthcare and public health systems in crisis. |
You may like...
Inspired by Nature - Essays Presented to…
Susan Stepney, Andrew Adamatzky
Hardcover
Reactive Flows, Diffusion and Transport…
Willi Jager, Rolf Rannacher, …
Hardcover
R4,145
Discovery Miles 41 450
Computing with Data - An Introduction to…
Guy Lebanon, Mohamed El-Geish
Hardcover
R2,737
Discovery Miles 27 370
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Urban Air Pollution Monitoring by…
Mikalai Filonchyk, Haowen Yan
Hardcover
R3,688
Discovery Miles 36 880
Seminar on Stochastic Analysis, Random…
Robert Dalang, Marco Dozzi, …
Hardcover
R2,745
Discovery Miles 27 450
Primer for Data Analytics and Graduate…
Douglas Wolfe, Grant Schneider
Hardcover
R2,441
Discovery Miles 24 410
|