![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The problems of modern society are complex, interdisciplinary and nonlin ear. onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see 27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t, u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t, u) s f(t, u) s h(t, u), for all (t, u)."
This open access proceedings volume brings selected, peer-reviewed contributions presented at the Stochastic Transport in Upper Ocean Dynamics (STUOD) 2021 Workshop, held virtually and in person at the Imperial College London, UK, September 20-23, 2021. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography.
This volume highlights contributions of women mathematicians in the study of complex materials and includes both original research papers and reviews. The featured topics and methods draw on the fields of Calculus of Variations, Partial Differential Equations, Functional Analysis, Differential Geometry and Topology, as well as Numerical Analysis and Mathematical Modelling. Areas of applications include foams, fluid-solid interactions, liquid crystals, shape-memory alloys, magnetic suspensions, failure in solids, plasticity, viscoelasticity, homogenization, crystallization, grain growth, and phase-field models.
Krichever and Novikov introduced certain classes of infinite dimensional Lie algebras to extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them to a more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are still manageable. This book gives an introduction for the newcomer to this exciting field of ongoing research in mathematics and will be a valuable source of reference for the experienced researcher. Beside the basic constructions and results also applications are presented.
This volume contains the proceedings of the International Conference on Algebra and Related Topics, held from July 2-5, 2018, at Mohammed V University, Rabat, Morocco. Linear reserver problems demand the characterization of linear maps between algebras that leave invariant certain properties or certain subsets or relations. One of the most intractable unsolved problems in is Kaplansky's conjecture: every surjective unital invertibility preserving linear map between two semisimple Banach algebras is a Jordan homomorphism. Recently, there has been an upsurge of interest in nonlinear preservers, where the maps studied are no longer assumed linear but instead a weak algebraic condition is somehow involved through the preserving property. This volume contains several articles on various aspects of preservers, including such topics as Jordan isomorphisms, Aluthge transform, joint numerical radius on $C^*$-algebras, advertible complete algebras, and Gelfand-Mazur algebras. The volume also contains a survey on recent progress on local spectrum-preserving maps. Several articles in the volume present results about weighted spaces and algebras of holomorphic or harmonic functions, including biduality in weighted spaces of analytic functions, interpolation in the analytic Wiener algebra, and weighted composition operators on non-locally convex weighted spaces.
This book offers a rigorous and coherent introduction to the five basic number systems of mathematics, namely natural numbers, integers, rational numbers, real numbers, and complex numbers. It is a subject that many mathematicians believe should be learned by any student of mathematics including future teachers. The book starts with the development of Peano arithmetic in the first chapter which includes mathematical induction and elements of recursion theory. It proceeds to an examination of integers that also covers rings and ordered integral domains. The presentation of rational numbers includes material on ordered fields and convergence of sequences in these fields. Cauchy and Dedekind completeness properties of the field of real numbers are established, together with some properties of real continuous functions. An elementary proof of the Fundamental Theorem of Algebra is the highest point of the chapter on complex numbers. The great merit of the book lies in its extensive list of exercises following each chapter. These exercises are designed to assist the instructor and to enhance the learning experience of the students.
This text is rigorous, fairly traditional and is appropriate for engineering and science calculus tracks. Hallmarks are accuracy, strong engineering and science applications, deep problem sets (in quantity, depth, and range), and spectacular visuals.
"The Art of Proof" is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
The main contents and character of the monograph did not change with respect to the first edition. However, within most chapters we incorporated quite a number of modifications which take into account the recent development of the field, the very valuable suggestions and comments that we received from numerous colleagues and students as well as our own experience while using the book. Some errors and misprints in the first edition are also corrected. Reiner Horst May 1992 Hoang Tuy PREFACE TO THE FIRST EDITION The enormous practical need for solving global optimization problems coupled with a rapidly advancing computer technology has allowed one to consider problems which a few years aga would have been considered computationally intractable. As a consequence, we are seeing the creation of a large and increasing number of diverse algorithms for solving a wide variety of multiextremal global optimization problems. The goal of this book is to systematically clarify and unify these diverse approaches in order to provide insight into the underlying concepts and their pro perties. Aside from a coherent view of the field much new material is presented."
The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields.
Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgue spaces, representation theorems) is generalized, at least for submodular measures which are characterized by having a subadditive integral. The theory is of interest for applications to economic decision theory (decisions under risk and uncertainty), to statistics (including belief functions, fuzzy measures) to cooperative game theory, artificial intelligence, insurance, etc. Non-Additive Measure and Integral collects the results of scattered and often isolated approaches to non-additive measures and their integrals which originate in pure mathematics, potential theory, statistics, game theory, economic decision theory and other fields of application. It unifies, simplifies and generalizes known results and supplements the theory with new results, thus providing a sound basis for applications and further research in this growing field of increasing interest. It also contains fundamental results of sigma-additive and finitely additive measure and integration theory and sheds new light on additive theory. Non-Additive Measure and Integral employs distribution functions and quantile functions as basis tools, thus remaining close to the familiar language of probability theory. In addition to serving as an important reference, the book can be used as a mathematics textbook for graduate courses or seminars, containing many exercises to support or supplement the text.
Preservation of Moduli of Continuity for BersteinType Operators (J.A. Adell, J. de la Cal). Lp-Korovkin Type Inequalities for Positive Linear Operators (G.A. Anastassiou). On Some ShiftInvariate Integral Operators, Multivariate Case (G.A. Anastassiou, H.H. Gonska). Multivariate Probabalistic Wavelet Approximation (G. Anastassiou et al.). Probabalistic Approach to the Rounding Problem with Applications to Fair Representation (B. Athanasopoulos). Limit Theorums for Random Multinomial Forms (A. Basalykas). Multivariate Boolean Trapezoidal Rules (G. Baszenski, F.J. Delvos). Convergence Results for an Extension of the Fourier Transform (C. Belingeri, P.E. Ricci). The Action Constants (B.L. Chalmers, B. Shekhtman). Bivariate Probability Distributions Similar to Exponential (B. Dimitrov et al.). Probability, Waiting Time Results for Pattern and Frequency Quotas in the Same Inverse Sampling Problem Via the Dirichlet (M. Ebneshahrashoob, M. Sobel). 25 additional articles. Index.
Equations of the Ginzburg Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Holder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource."
This book examines various mathematical toolsa "based on generalized collocation methodsa "to solve nonlinear problems related to partial differential and integro-differential equations. Covered are specific problems and models related to vehicular traffic flow, population dynamics, wave phenomena, heat convection and diffusion, transport phenomena, and pollution. Based on a unified approach combining modeling, mathematical methods, and scientific computation, each chapter begins with several examples and problems solved by computational methods; full details of the solution techniques used are given. The last section of each chapter provides problems and exercises giving readers the opportunity to practice using the mathematical tools already presented. Rounding out the work is an appendix consisting of scientific programs in which readers may find practical guidelines for the efficient application of the collocation methods used in the book. Although the authors make use of MathematicaA(R), readers may use other packages such as MATLABA(R) or MapleTM depending on their specific needs and software preferences. Generalized Collocation Methods is written for an interdisciplinary audience of graduate students, engineers, scientists, and applied mathematicians with an interest in modeling real-world systems by differential or operator equations. The work may be used as a supplementary textbook in graduate courses on modeling and nonlinear differential equations, or as a self-study handbook for researchers and practitioners wishing to expand their knowledge of practical solution techniques for nonlinear problems.
This selection of outstanding articles - an outgrowth of the QMath9 meeting for young scientists - covers new techniques and recent results on spectral theory, statistical mechanics, Bose-Einstein condensation, random operators, magnetic Schrodinger operators and more. The book's pedagogical style makes it a useful introduction to the research literature for postgraduate students. For more expert researchers it will serve as a concise source of modern reference."
Written in an accessible and informal style, this textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all internationally known mathematicians and renowned expositors. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles.
Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A."
: So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (@oetqe
These papers from the Workshop on Operator Theory and Complex Analysis review advances in operator theory and complex analysis, and their interplay in applications to mathematical system theory and control. Special attention is paid to different extension and interpolation problems for matrix and operator valued functions. Other topics include: operator inequalities and operator means; matrix completion problems; operators in spaces with indefinite scalar products and non-selfadjoint operators; and scattering and inverse spectral problems. The book should be useful to both pure and applied mathematicians.
"Theory of Function Spaces II" deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as H lder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. "Theory of Function Spaces II" is self-contained, although it may be considered an update of the author 's earlier book of the same title. The book 's 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds.
This book addresses the problem of multi-agent systems, considering that it can be interpreted as a generalized multi-synchronization problem. From manufacturing tasks, through encryption and communication algorithms, to high-precision experiments, the simultaneous cooperation between multiple systems or agents is essential to successfully carrying out different modern activities, both in academy and industry. For example, the coordination of multiple assembler robots in manufacturing lines. These agents need to synchronize. The first two chapters of the book describe the synchronization of dynamical systems, paying special attention to the synchronization of non-identical systems. Following, the third chapter presents an interesting application of the synchronization phenomenon for state estimation. Subsequently, the authors fully address the multi-agent problem interpreted as multi-synchronization. The final chapters introduce the reader to a more complex problem, the synchronization of systems governed by partial differential equations, both of integer and fractional order. The book aimed at graduates, postgraduate students and researchers closely related to the area of automatic control. Previous knowledge of linear algebra, classical and fractional calculus is requested, as well as some fundamental notions of graph theory.
The approach here relies on two beliefs. The first is that almost nobody fully understands calculus the first time around. The second is that graphing calculators can be used to simplify the theory of limits for students. This book presents the theoretical pieces of introductory calculus, using appropriate technology, in a style suitable to accompany almost any first calculus text. It offers a large range of increasingly sophisticated examples and problems to build an understanding of the notion of limit and other theoretical concepts. Aimed at students who will study fields in which the understanding of calculus as a tool is not sufficient, the text uses the "spiral approach" of teaching, returning again and again to difficult topics, anticipating such returns across the calculus courses in preparation for the first analysis course. Suitable as the "content" text for a transition to upper level mathematics course.
* Good reference text; clusters well with other Birkhauser integral equations & integral methods books (Estrada and Kanwal, Kythe/Puri, Constanda, et al). * Includes many practical applications/techniques for applied mathematicians, physicists, engineers, grad students. * The contributors to the volume draw from a number of physical domains and propose diverse treatments for various mathematical models through the use of integration as an essential solution tool. * Physically meaningful problems in areas related to finite and boundary element techniques, conservation laws, hybrid approaches, ordinary and partial differential equations, and vortex methods are explored in a rigorous, accessible manner. * The new results provided are a good starting point for future exploitation of the interdisciplinary potential of integration as a unifying methodology for the investigation of mathematical models.
"Configural Frequency Analysis" (CFA) provides an up-to-the-minute
comprehensive introduction to its techniques, models, and
applications. Written in a formal yet accessible style, actual
empirical data examples are used to illustrate key concepts.
Step-by-step program sequences are used to show readers how to
employ CFA methods using commercial software packages, such as SAS,
SPSS, SYSTAT, S-Plus, or those written specifically to perform CFA.
|
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,427
Discovery Miles 34 270
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,623
Discovery Miles 26 230
|