![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Translated from the original Russian edition of 1987 (Nauka, Moscow), this volume deals with the theory of multi-frequency oscillations as a motion of a dynamical system which describes a recurrent trajectory on an invariant toroidal manifold of the system. In this way, the invariant toroidal manifo
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wavelet packets and discrete time wavelet transforms, and concludes with applications in signal processing.
This monograph is divided into five parts and opens with elements of the theory of singular integral equation solutions in the class of absolutely integrable and non-integrable functions. The second part deals with elements of potential theory for the Helmholtz equation, especially with the reduction of Dirichlet and Neumann problems for Laplace and Helmholtz equations to singular integral equations. Part three contains methods of calculation for different one-dimensional and two-dimensional singular integrals. In this part, quadrature formulas of discrete vortex pair type in the plane case and closed vortex frame type in the spatial case for singular integrals are described for the first time. These quadrature formulas are applied to numerical solutions of singular integral equations of the 1st and 2nd kind with constant and variable coefficients, in part four of the book. Finally, discrete mathematical models of some problems in aerodynamics, electrodynamics and elasticity theory are given.
The book includes the latest high technology on solving very important theoretical and practical problems on solid mechanics, fracture mechanics, structural analysis, elastodynamics, fluid mechanis and aerodynamics, by using linear and non-linear singular integral equation methods. Analytical theories and numerical evaluation methods are investigated and introduced for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations with a very important use in a wide field of engineering mechanics. The proposed Singular Interal Operator Method in many cases offers important advantages over "domain" type solutions, like finite elements and finite difference, as well as analytical methods, such as complex variable methods.
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in PadA(c) theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences.
One service mathematics has rendered the 'Et moi, ... ) si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point aile.' Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. ErieT. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book covers the impact of noise on models that are widely used in science and engineering applications. It applies perturbed methods, which assume noise changes on a faster time or space scale than the system being studied. The book is written in two parts. The first part presents a careful development of mathematical methods needed to study random perturbations of dynamical systems. The second part presents non-random problems in a variety of important applications. Such problems are reformulated to account for both external and system random noise.
This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes' noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes' character formula concerning the Hochschild class of the Chern character.
This book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed. This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space. From the contents Fourier series Fourier integrals Locally compact groups Haar measures Harmonic analysis on locally compact abelian groups Theory and examples of Gelfand pairs Theory and examples of generalized Gelfand pairs
Nestled between number theory, combinatorics, algebra and analysis lies a rapidly developing subject in mathematics variously known as additive combinatorics, additive number theory, additive group theory, and combinatorial number theory. Its main objects of study are not abelian groups themselves, but rather the additive structure of subsets and subsequences of an abelian group, i.e., sumsets and subsequence sums. This text is a hybrid of a research monograph and an introductory graduate textbook. With few exceptions, all results presented are self-contained, written in great detail, and only reliant upon material covered in an advanced undergraduate curriculum supplemented with some additional Algebra, rendering this bookusable as an entry-level text. However, it will perhaps be of even more interest to researchers already in the field. The majority of material is not found in book form and includes many new results as well. Even classical results, when included, are given in greater generality or using new proof variations. The text has a particular focus on results of a more exact and precise nature, results with strong hypotheses and yet stronger conclusions, and on fundamental aspects of the theory. Also included are intricate results often neglected in other texts owing to their complexity. Highlights include an extensive treatment of Freiman Homomorphisms and the Universal Ambient Group of sumsets A+B, an entire chapter devoted to Hamidoune s Isoperimetric Method, a novel generalization allowing infinite summands in finite sumset questions, weighted zero-sum problems treated in the general context of viewing homomorphisms as weights, and simplified proofs of the Kemperman Structure Theorem and the Partition Theorem for setpartitions."
This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world.
This book focuses on the nonlinear dynamics based on the vector fields with univariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems. It provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems. Such a two-dimensional dynamical system is one of simplest dynamical systems in nonlinear dynamics, but the local and global structures of equilibriums and flows in such two-dimensional quadratic systems help us understand other nonlinear dynamical systems, which is also a crucial step toward solving the Hilbert's sixteenth problem. Possible singular dynamics of the two-dimensional quadratic systems are discussed in detail. The dynamics of equilibriums and one-dimensional flows in two-dimensional systems are presented. Saddle-sink and saddle-source bifurcations are discussed, and saddle-center bifurcations are presented. The infinite-equilibrium states are switching bifurcations for nonlinear systems. From the first integral manifolds, the saddle-center networks are developed, and the networks of saddles, source, and sink are also presented. This book serves as a reference book on dynamical systems and control for researchers, students, and engineering in mathematics, mechanical, and electrical engineering.
Flying safely in aircraft implies the use of navigation instruments. Among them, the magnetic compass is still a first choice for orientation and it is compulsory in all aircraft. In our increasingly sophisticated but fragile world of global navigation systems and gyroscopic sensors, the compass is especially useful as a back-up: it has high reliability and is likely to survive in harsh electromagnetic aggressions or when all power supplies have failed. This book examines in detail how the science of geomagnetism is able to promote a correct use of the magnetic compass for navigation. A selected group of specialists met in Ohrid, Macedonia to expose their approaches to the question. Using techniques from Geology, Instrument science, Magnetism, Chaos theory and Potential Fields applied to the Balkan region and surroundings, they put together a roadmap to fully tackle the issue of measurement, analysis, mapping and forecasting of the magnetic declination in support of aeronautical safety.
This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.
"Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."
Mathematical Analysis for Modeling is intended for those who want to understand the substance of mathematics, rather than just having familiarity with its techniques. It provides a thorough understanding of how mathematics is developed for and applies to solving scientific and engineering problems. The authors stress the construction of mathematical descriptions of scientific and engineering situations, rather than rote memorizations of proofs and formulas. Emphasis is placed on algorithms as solutions to problems and on insight rather than formal derivations.
The book analyzes the existence of solitons, namely of finite energy solutions of field equations which exhibit stability properties. The book is divided in two parts. In the first part, the authors give an abstract definition of solitary wave and soliton and we develop an abstract existence theory for hylomorphic solitons, namely for those solitons which minimize the energy for a given charge. In the second part, the authors apply this theory to prove the existence of hylomorphic solitons for some classes of field equations (nonlinear Klein-Gordon-Maxwell equations, nonlinear Schroedinger-Maxwell equations, nonlinear beam equation,..). The abstract theory is sufficiently flexible to be applied to other situations, like the existence of vortices. The books is addressed to Mathematicians and Physicists.
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-Chief Jurgen Appell, Wurzburg, Germany Honorary and Advisory Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Alfonso Vignoli, Rome, Italy Editorial Board Manuel del Pino, Bath, UK, and Santiago, Chile Mikio Kato, Nagano, Japan Wojciech Kryszewski, Torun, Poland Vicentiu D. Radulescu, Krakow, Poland Simeon Reich, Haifa, Israel Please submit book proposals to Jurgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019) Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019) Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019) Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy-Leray Potential (2020) Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020) Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)
This book addresses the problem of multi-agent systems, considering that it can be interpreted as a generalized multi-synchronization problem. From manufacturing tasks, through encryption and communication algorithms, to high-precision experiments, the simultaneous cooperation between multiple systems or agents is essential to successfully carrying out different modern activities, both in academy and industry. For example, the coordination of multiple assembler robots in manufacturing lines. These agents need to synchronize. The first two chapters of the book describe the synchronization of dynamical systems, paying special attention to the synchronization of non-identical systems. Following, the third chapter presents an interesting application of the synchronization phenomenon for state estimation. Subsequently, the authors fully address the multi-agent problem interpreted as multi-synchronization. The final chapters introduce the reader to a more complex problem, the synchronization of systems governed by partial differential equations, both of integer and fractional order. The book aimed at graduates, postgraduate students and researchers closely related to the area of automatic control. Previous knowledge of linear algebra, classical and fractional calculus is requested, as well as some fundamental notions of graph theory.
1. Interpolation problems play an important role both in theoretical and applied investigations. This explains the great number of works dedicated to classical and new interpolation problems ([1)-[5], [8), [13)-[16], [26)-[30], [57]). In this book we use a method of operator identities for investigating interpo lation problems. Following the method of operator identities we formulate a general interpolation problem containing the classical interpolation problems (Nevanlinna Pick, Caratheodory, Schur, Humburger, Krein) as particular cases. We write down the abstract form of the Potapov inequality. By solving this inequality we give the description of the set of solutions of the general interpolation problem in the terms of the linear-fractional transformation. Then we apply the obtained general results to a number of classical and new interpolation problems. Some chapters of the book are dedicated to the application of the interpola tion theory results to several other problems (the extension problem, generalized stationary processes, spectral theory, nonlinear integrable equations, functions with operator arguments). 2. Now we shall proceed to a more detailed description of the book contents.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
M.M. Lavrentiev is the author of many fundamental scientific results in many directions of mathematics and its applications, such as differential equations, inverse and ill-posed problems, tomography, numerical and applied mathematics. His results in the theory of inverse problems for differential equations and in tomography are well known all over the world. To honour him on the occasion of his 70th birthday renowned scientists in this field of mathematics, both from East and West, have contributed to this special collection of papers on ill-posed and inverse problems, which will be of interest to anyone working in this field. |
![]() ![]() You may like...
Modern Bamboo Structures - Proceedings…
Yan Xiao, Masafumi Inoue, …
Hardcover
R5,842
Discovery Miles 58 420
Foundation Engineering - Design and…
B.B.K. Huat, Faisal Haji Ali, …
Hardcover
Kingdom Hearts Ultimania: The Story…
Square Enix, Disney
Hardcover
|