![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the "Age of reason" and next the "Birth of the modern world". The emphasis is rightly placed on the original contributions from the "Continental" scientists (the Bernoulli family, Euler, d'Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: "Continuum Mechanics through the Twentieth Century", Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.
This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers' understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book's main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.
Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the local spectral asymptotics of Volume I in the regular part of the domain are combined with variational estimates in the vicinity of singularities, and global asymptotics are derived in the general form. They are then applied to multiple cases and asymptotics with respect to a spectral parameter. Finally, cases in which only general methods but not the results can be applied (non-standard asymptotics) are studied.
Linear Operators and Their Essential Pseudospectra provides a comprehensive study of spectral theory of linear operators defined on Banach spaces. The central items of interest in the volume include various essential spectra, but the author also considers some of the generalizations that have been studied. In recent years, spectral theory has witnessed an explosive development. This volume presents a survey of results concerning various types of essential spectra and pseudospectra in a unified, axiomatic way and also discusses several topics that are new but which relate to the concepts and methods emanating from the book. The main topics include essential spectra, essential pseudospectra, structured essential pseudospectra, and their relative sets. This volume will be very useful for several researchers since it represents not only a collection of previously heterogeneous material but also includes discussions of innovation through several extensions. As the spectral theory of operators is an important part of functional analysis and has numerous applications in many areas of mathematics, the author suggests that some modest prerequisites from functional analysis and operator theory should be in place to be accessible to newcomers and graduate students of mathematics.
An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.
A First Course in Ergodic Theory provides readers with an introductory course in Ergodic Theory. This textbook has been developed from the authors' own notes on the subject, which they have been teaching since the 1990s. Over the years they have added topics, theorems, examples and explanations from various sources. The result is a book that is easy to teach from and easy to learn from - designed to require only minimal prerequisites. Features Suitable for readers with only a basic knowledge of measure theory, some topology and a very basic knowledge of functional analysis Perfect as the primary textbook for a course in Ergodic Theory Examples are described and are studied in detail when new properties are presented.
Mathematical Properties of Sequences and Other Combinatorial Structures is an excellent reference for both professional and academic researchers working in telecommunications, cryptography, signal processing, discrete mathematics, and information theory. The work represents a collection of contributions from leading experts in the field. Contributors have individually and collectively dedicated their work as a tribute to the outstanding work of Solomon W. Golomb. Mathematical Properties of Sequences and Other Combinatorial Structures covers the latest advances in the widely used and rapidly developing field of information and communication technology.
This book provides a comprehensive analysis of time domain boundary integral equations and their discretisation by convolution quadrature and the boundary element method. Properties of convolution quadrature, based on both linear multistep and Runge-Kutta methods, are explained in detail, always with wave propagation problems in mind. Main algorithms for implementing the discrete schemes are described and illustrated by short Matlab codes; translation to other languages can be found on the accompanying GitHub page. The codes are used to present numerous numerical examples to give the reader a feeling for the qualitative behaviour of the discrete schemes in practice. Applications to acoustic and electromagnetic scattering are described with an emphasis on the acoustic case where the fully discrete schemes for sound-soft and sound-hard scattering are developed and analysed in detail. A strength of the book is that more advanced applications such as linear and non-linear impedance boundary conditions and FEM/BEM coupling are also covered. While the focus is on wave scattering, a chapter on parabolic problems is included which also covers the relevant fast and oblivious algorithms. Finally, a brief description of data sparse techniques and modified convolution quadrature methods completes the book. Suitable for graduate students and above, this book is essentially self-contained, with background in mathematical analysis listed in the appendix along with other useful facts. Although not strictly necessary, some familiarity with boundary integral equations for steady state problems is desirable.
The aim of this book is to provide insight into Data Science and Artificial Learning Techniques based on Industry 4.0, conveys how Machine Learning & Data Science are becoming an essential part of industrial and academic research. Varying from healthcare to social networking and everywhere hybrid models for Data Science, Al, and Machine Learning are being used. The book describes different theoretical and practical aspects and highlights how new systems are being developed. Along with focusing on the research trends, challenges and future of AI in Data Science, the book explores the potential for integration of advanced AI algorithms, addresses the challenges of Data Science for Industry 4.0, covers different security issues, includes qualitative and quantitative research, and offers case studies with working models. This book also provides an overview of AI and Data Science algorithms for readers who do not have a strong mathematical background. Undergraduates, postgraduates, academicians, researchers, and industry professionals will benefit from this book and use it as a guide.
Written by internationally renowned mathematicians, this state-of-the-art textbook examines four research directions in harmonic analysis and features some of the latest applications in the field. The work is the first one that combines spline theory, wavelets, frames, and time-frequency methods leading up to a construction of wavelets on manifolds other than Rn. Four Short Courses on Harmonic Analysis is intended as a graduate-level textbook for courses or seminars on harmonic analysis and its applications. The work is also an excellent reference or self-study guide for researchers and practitioners with diverse mathematical backgrounds working in different fields such as pure and applied mathematics, image and signal processing engineering, mathematical physics, and communication theory.
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
Introductory Analysis: An Inquiry Approach aims to provide a self-contained, inquiry-oriented approach to undergraduate-level real analysis. The presentation of the material in the book is intended to be "inquiry-oriented'" in that as each major topic is discussed, details of the proofs are left to the student in a way that encourages an active approach to learning. The book is "self-contained" in two major ways: it includes scaffolding (i.e., brief guiding prompts marked as Key Steps in the Proof) for many of the theorems. Second, it includes preliminary material that introduces students to the fundamental framework of logical reasoning and proof-writing techniques. Students will be able to use the guiding prompts (and refer to the preliminary work) to develop their proof-writing skills. Features Structured in such a way that approximately one week of class can be devoted to each chapter Suitable as a primary text for undergraduates, or as a supplementary text for some postgraduate courses Strikes a unique balance between enquiry-based learning and more traditional approaches to teaching
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas. One hundred new pages added including new material on transcedentally small terms, Kummer's function, weakly coupled oscillators and wave interactions.
This textbook gives an introduction to distribution theory with emphasis on applications using functional analysis. In more advanced parts of the book, pseudodi?erential methods are introduced. Distributiontheoryhasbeen developedprimarilytodealwithpartial(and ordinary) di?erential equations in general situations. Functional analysis in, say, Hilbert spaces has powerful tools to establish operators with good m- ping properties and invertibility properties. A combination of the two allows showing solvability of suitable concrete partial di?erential equations (PDE). When partial di?erential operators are realized as operators in L (?) for 2 n anopensubset?ofR, theycomeoutasunboundedoperators.Basiccourses infunctionalanalysisareoftenlimitedtothestudyofboundedoperators, but we here meet the necessityof treating suitable types ofunbounded operators; primarily those that are densely de?ned and closed. Moreover, the emphasis in functional analysis is often placed on selfadjoint or normal operators, for which beautiful results can be obtained by means of spectral theory, but the cases of interest in PDE include many nonselfadjoint operators, where diagonalizationbyspectraltheoryisnotveryuseful.Weincludeinthisbooka chapter on unbounded operatorsin Hilbert space (Chapter 12), where classes of convenient operators are set up, in particular the variational operators, including selfadjoint semibounded cases (e.g., the Friedrichs extension of a symmetric operator), but with a much wider scope. Whereas the functional analysis de?nition of the operators is relatively clean and simple, the interpretation to PDE is more messy and complicate
This book is the first to be devoted to the theory of vector-valued functions with one variable. This theory is one of the fundamental tools employed in modern physics, the spectral theory of operators, approximation of analytic operators, analytic mappings between vectors, and vector-valued functions of several variables. The book contains three chapters devoted to the theory of normal functions, Hp-space, and vector-valued functions and their applications. Among the topics dealt with are the properties of complex functions in a complex plane and infinite-dimensional spaces, and the solution of vector-valued integral equations and boundary value problems by complex analysis and functional analysis, which involve methods which can be applied to problems in operations research and control theory. Much original research is included. This volume will be of interest to those whose work involves complex analysis and control theory, and can be recommended as a graduate text in these areas.
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.
This book examines Multi-Criteria Decision Modelling (MCDM) methodologies and facilitates diverse ways for strategic decision-making in a variety of practical applications. This book also provides a pragmatic foundation for solving real-life problems in different scenarios of emerging global markets. Multi-Criteria Decision Modelling: Applicational Techniques and Case Studies depicts the use of sensitivity analysis and modelling and includes case studies to understand and illustrate challenging concepts. It also offers step-by-step comprehensive methodologies for the utilization of MCDM to a variety of situations. The book deliberates ways for companies to use these methods to their advantage in order to achieve sustainability. Furthermore, it also presents an overview of the major streams of thought and provides a holistic view of the latest research and development trends in modelling and optimization. FEATURES Offers a stepwise comprehensive methodology for the application of MCDM to a variety of situations Presents an overview of the major streams of thought present in the MCDM technique Provides a holistic view of the latest research and development trends in the emerging markets in terms of modelling and optimization using MCDM for different industrial sectors Illuminates a practical foundation in order to provide a guide to address the problems of emerging markets Enlightens the ways for companies to use these methods to their advantage to be able to achieve sustainability This book is a guide for those performing decision analysis for academic purposes as well as for researchers aspiring to expand their knowledge on MCDM problem solving.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.
Primarily aimed at researchers and postgraduates, but may be of interest to some professionals working in related fields, such as the insurance industry Suitable as supplementary reading for a standard course in applied probability Requires minimal prerequisites in mathematical analysis and probability theory
Intuitive real geometric approach to higher-dimensional Fourier transformations A comprehensive reference, suitable for graduate students and researchers Includes detailed definitions, properties, and many full step-by-step proofs Many figures and tables, a comprehensive biography, and a detailed index make it easy to locate information |
You may like...
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,900
Discovery Miles 39 000
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R3,164
Discovery Miles 31 640
|