![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
A remarkable interplay exists between the fields of elliptic functions and orthogonal polynomials. In the first monograph to explore their connections, Elliptic Polynomials combines these two areas of study, leading to an interesting development of some basic aspects of each. It presents new material about various classes of polynomials and about the odd Jacobi elliptic functions and their inverses. The term elliptic polynomials refers to the polynomials generated by odd elliptic integrals and elliptic functions. In studying these, the authors consider such things as orthogonality and the construction of weight functions and measures, finding structure constants and interesting inequalities, and deriving useful formulas and evaluations. Although some of the material may be familiar, it establishes a new mathematical field that intersects with classical subjects at many points. Its wealth of information on important properties of polynomials and clear, accessible presentation make Elliptic Polynomials valuable to those in real and complex analysis, number theory, and combinatorics, and will undoubtedly generate further research.
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important methods of singular perturbations within the scope of application of differential equations. The authors take a challenging and original approach based on the integrated mathematical-analytical treatment of various objects taken from interdisciplinary fields of mechanics, physics, and applied mathematics. This new hybrid approach will lead to results that cannot be obtained by standard theories in the field. Emphasizing fundamental elements of the mathematical modeling process, the book provides comprehensive coverage of asymptotic approaches, regular and singular perturbations, one-dimensional non-stationary non-linear waves, Pade approximations, oscillators with negative Duffing type stiffness, and differential equations with discontinuous nonlinearities. The book also offers a method of construction for canonical variables transformation in parametric form along with a number of examples and applications. The book is applications oriented and features results and literature citations that have not been seen in the Western Scientific Community. The authors emphasize the dynamics of the development of perturbation methods and present the development of ideas associated with this wide field of research.
Fractional calculus in terms of mathematics and statistics and its applications to problems in natural sciences is NOT yet part of university teaching curricula. This book is one attempt to provide an approach to include topics of fractional calculus into university curricula. Additionally the material is useful for people who do research work in the areas of special functions, fractional calculus, applications of fractional calculus, and mathematical statistics.
Extending and generalizing the results of rational equations, Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures focuses on the boundedness nature of solutions, the global stability of equilibrium points, the periodic character of solutions, and the convergence to periodic solutions, including their periodic trichotomies. The book also provides numerous thought-provoking open problems and conjectures on the boundedness character, global stability, and periodic behavior of solutions of rational difference equations. After introducing several basic definitions and general results, the authors examine 135 special cases of rational difference equations that have only bounded solutions and the equations that have unbounded solutions in some range of their parameters. They then explore the seven known nonlinear periodic trichotomies of third order rational difference equations. The main part of the book presents the known results of each of the 225 special cases of third order rational difference equations. In addition, the appendices supply tables that feature important information on these cases as well as on the boundedness character of all fourth order rational difference equations. A Framework for Future Research The theory and techniques developed in this book to understand the dynamics of rational difference equations will be useful in analyzing the equations in any mathematical model that involves difference equations. Moreover, the stimulating conjectures will promote future investigations in this fascinating, yet surprisingly little known area of research.
Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.
Gives a complete and rigorous presentation of the mathematical study of the expressions - hemivariational inequalities - arising in problems that involve nonconvex, nonsmooth energy functions. A theory of the existence of solutions for inequality problems involving monconvexity and nonsmoothness is established.
This work offers detailed coverage of every important aspect of symmetric structures in function of a single real variable, providing a historical perspective, proofs and useful methods for addressing problems. It provides assistance for real analysis problems involving symmetric derivatives, symmetric continuity and local symmetric structure of sets or functions.
This reference/text develops a constructive theory of solvability on linear and nonlinear abstract and differential equations - involving A-proper operator equations in separable Banach spaces, and treats the problem of existence of a solution for equations involving pseudo-A-proper and weakly-A-proper mappings, and illustrates their applications.;Facilitating the understanding of the solvability of equations in infinite dimensional Banach space through finite dimensional appoximations, this book: offers an elementary introductions to the general theory of A-proper and pseudo-A-proper maps; develops the linear theory of A-proper maps; furnishes the best possible results for linear equations; establishes the existence of fixed points and eigenvalues for P-gamma-compact maps, including classical results; provides surjectivity theorems for pseudo-A-proper and weakly-A-proper mappings that unify and extend earlier results on monotone and accretive mappings; shows how Friedrichs' linear extension theory can be generalized to the extensions of densely defined nonlinear operators in a Hilbert space; presents the generalized topological degree theory for A-proper mappings; and applies abstract results to boundary value problems and to bifurcation and asymptotic bifurcation problems.;There are also over 900 display equations, and an appendix that contains basic theorems from real function theory and measure/integration theory.
This self-contained reference/text presents a thorough account of the theory of real function algebras. Employing the intrinsic approach, avoiding the complexification technique, and generalizing the theory of complex function algebras, this single-source volume includes: an introduction to real Banach algebras; various generalizations of the Stone-Weierstrass theorem; Gleason parts; Choquet and Shilov boundaries; isometries of real function algebras; extensive references; and a detailed bibliography.;Real Function Algebras offers results of independent interest such as: topological conditions for the commutativity of a real or complex Banach algebra; Ransford's short elementary proof of the Bishop-Stone-Weierstrass theorem; the implication of the analyticity or antianalyticity of f from the harmonicity of Re f, Re f(2), Re f(3), and Re f(4); and the positivity of the real part of a linear functional on a subspace of C(X).;With over 600 display equations, this reference is for mathematical analysts; pure, applied, and industrial mathematicians; and theoretical physicists; and a text for courses in Banach algebras and function algebras.
Intended for specialists in functional analysis and stability theory, this work presents a systematic exposition of estimations for norms of operator-valued functions, and applies the estimates to spectrum perturbations of linear operators and stability theory. The author demonstrates his own approach to spectrum perturbations.
In this volume, logic starts from the observation that in everyday arguments, as brought forward by say a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. The book concludes with the algorithms producing the results of Gentzen's midsequent theorem and Herbrand's theorem for prenex formulas.
Foundations of Analysis covers the basics of real analysis for a one- or two-semester course. In a straightforward and concise way, it helps students understand the key ideas and apply the theorems. The book's accessible approach will appeal to a wide range of students and instructors. Each section begins with a boxed introduction that familiarizes students with the upcoming topics and sets the stage for the work to be done. Each section ends with several questions that ask students to review what they have just learned. The text is also scattered with notes pointing out places where different pieces of terminology seem to conflict with each other or where different ideas appear not to fit together properly. In addition, many remarks throughout help put the material in perspective. As with any real analysis text, exercises are powerful and effective learning tools. This book is no exception. Each chapter generally contains at least 50 exercises that build in difficulty, with an exercise set at the end of every section. This allows students to more easily link the exercises to the material in the section.
This package includes MyMathLab (R). For freshman/sophomore, 2-semester (2-3 quarter) courses covering applied calculus for students in business, economics, social sciences, or life sciences. Calculus with Applications, Eleventh Edition by Lial, Greenwell, and Ritchey, is our most applied text to date, making the math relevant and accessible for students of business, life science, and social sciences. Current applications, many using real data, are incorporated in numerous forms throughout the book, preparing students for success in their professional careers. With this edition, students will find new ways to help them learn the material, such as Warm-Up Exercises and added "help text" within examples. This package includes MyMathLab, an online homework, tutorial, and assessment program designed to work with this text to personalize learning and improve results. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts. MyMathLab should only be purchased when required by an instructor. Please be sure you have the correct ISBN and Course ID. Instructors, contact your Pearson representative for more information. Personalize learning with MyMathLab The MyMathLab (R) course for the text provides online homework and additional learning resources for students, such as video tutorials, algebra help, step-by-step examples, and graphing calculator help. The course features many more assignable exercises than the previous edition.
Continuous optimization is the study of problems in which we wish to opti mize (either maximize or minimize) a continuous function (usually of several variables) often subject to a collection of restrictions on these variables. It has its foundation in the development of calculus by Newton and Leibniz in the 17* DEGREES century. Nowadys, continuous optimization problems are widespread in the mathematical modelling of real world systems for a very broad range of applications. Solution methods for large multivariable constrained continuous optimiza tion problems using computers began with the work of Dantzig in the late 1940s on the simplex method for linear programming problems. Recent re search in continuous optimization has produced a variety of theoretical devel opments, solution methods and new areas of applications. It is impossible to give a full account of the current trends and modern applications of contin uous optimization. It is our intention to present a number of topics in order to show the spectrum of current research activities and the development of numerical methods and applications."
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
This book is a monograph on harmonic analysis and fractal analysis over local fields. It can also be used as lecture notes/textbook or as recommended reading for courses on modern harmonic and fractal analysis. It is as reliable as Fourier Analysis on Local Fields published in 1975 which is regarded as the first monograph in this research field.The book is self-contained, with wide scope and deep knowledge, taking modern mathematics (such as modern algebra, point set topology, functional analysis, distribution theory, and so on) as bases. Specially, fractal analysis is studied in the viewpoint of local fields, and fractal calculus is established by pseudo-differential operators over local fields. A frame of fractal PDE is constructed based on fractal calculus instead of classical calculus. On the other hand, the author does his best to make those difficult concepts accessible to readers, illustrate clear comparison between harmonic analysis on Euclidean spaces and that on local fields, and at the same time provide motivations underlying the new concepts and techniques. Overall, it is a high quality, up to date and valuable book for interested readers.
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solution, numerical methods for solving integral equations of the second kind, and boundary integral equations for planar regions. The presentation of each topic is meant to be an introduction with certain degree of depth. Comprehensive references on a particular topic are listed at the end of each chapter for further reading and study. Because of the relevance in solving real world problems, multivariable polynomials are playing an ever more important role in research and applications. In this third editon, a new chapter on this topic has been included and some major changes are made on two chapters from the previous edition. In addition, there are numerous minor changes throughout the entire text and new exercises are added. Review of earlier edition: ..".the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references." R. Glowinski, SIAM Review, 2003
Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}'_{216}$. It provides another beautiful example on the fundamental unity of mathematics.
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.
This book is not a research monograph about Malliavin calculus with the latest results and the most sophisticated proofs. It does not contain all the results which are known even for the basic subjects which are addressed here. The goal was to give the largest possible variety of proof techniques. For instance, we did not focus on the proof of concentration inequality for functionals of the Brownian motion, as it closely follows the lines of the analog result for Poisson functionals. This book grew from the graduate courses I gave at Paris-Sorbonne and Paris-Saclay universities, during the last few years. It is supposed to be as accessible as possible for students who have knowledge of Ito calculus and some rudiments of functional analysis.
The second edition of this text has sold over 6,000 copies since
publication in 1986 and this revision will make it even more
useful. This is the only book available that is approachable by
"beginners" in this subject. It has become an essential
introduction to the subject for mathematics students, engineers,
physicists, and economists who need to learn how to apply these
vital methods. It is also the only book that thoroughly reviews
certain areas of advanced calculus that are necessary to understand
the subject.
The fast growing field of mathematical biology addresses biological questions using mathematical models from areas such as dynamical systems, probability, statistics, and discrete mathematics. This book considers models that are described by systems of partial differential equations, and it focuses on modeling, rather than on numerical methods and simulations. The models studied are concerned with population dynamics, cancer, risk of plaque growth associated with high cholesterol, and wound healing. A rich variety of open problems demonstrates the exciting challenges and opportunities for research at the interface of mathematics and biology. This book primarily addresses students and researchers in mathematics who do not necessarily have any background in biology and who may have had little exposure to PDEs.
Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields. This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.
An Introduction to Non-Harmonic Fourier Series, Revised Edition is
an update of a widely known and highly respected classic textbook.
|
![]() ![]() You may like...
Internet of Things. Technology and…
Luis M. Camarinha-Matos, Geert Heijenk, …
Hardcover
R2,655
Discovery Miles 26 550
Computer and Computing Technologies in…
Daoliang Li, Yingyi Chen
Hardcover
R2,978
Discovery Miles 29 780
Exploring Future Opportunities of…
Madhulika Bhatia, Tanupriya Choudhury, …
Hardcover
R7,249
Discovery Miles 72 490
Interoperability, Safety and Security in…
Nathalie Mitton, Hakima Chaouchi, …
Paperback
R2,029
Discovery Miles 20 290
Harnessing VLSI System Design with EDA…
Rajanish K. Kamat, Santosh A. Shinde, …
Hardcover
R2,873
Discovery Miles 28 730
Computational and Methodological…
Andriette Bekker, (Din) Ding-Geng Chen, …
Hardcover
R4,276
Discovery Miles 42 760
|