![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
An Elementary Transition to Abstract Mathematics will help students move from introductory courses to those where rigor and proof play a much greater role. The text is organized into five basic parts: the first looks back on selected topics from pre-calculus and calculus, treating them more rigorously, and it covers various proof techniques; the second part covers induction, sets, functions, cardinality, complex numbers, permutations, and matrices; the third part introduces basic number theory including applications to cryptography; the fourth part introduces key objects from abstract algebra; and the final part focuses on polynomials. Features: The material is presented in many short chapters, so that one concept at a time can be absorbed by the student. Two "looking back" chapters at the outset (pre-calculus and calculus) are designed to start the student's transition by working with familiar concepts. Many examples of every concept are given to make the material as concrete as possible and to emphasize the importance of searching for patterns. A conversational writing style is employed throughout in an effort to encourage active learning on the part of the student.
A Concrete Introduction to Analysis, Second Edition offers a major reorganization of the previous edition with the goal of making it a much more comprehensive and accessible for students. The standard, austere approach to teaching modern mathematics with its emphasis on formal proofs can be challenging and discouraging for many students. To remedy this situation, the new edition is more rewarding and inviting. Students benefit from the text by gaining a solid foundational knowledge of analysis, which they can use in their fields of study and chosen professions. The new edition capitalizes on the trend to combine topics from a traditional transition to proofs course with a first course on analysis. Like the first edition, the text is appropriate for a one- or two-semester introductory analysis or real analysis course. The choice of topics and level of coverage is suitable for mathematics majors, future teachers, and students studying engineering or other fields requiring a solid, working knowledge of undergraduate mathematics. Key highlights: Offers integration of transition topics to assist with the necessary background for analysis Can be used for either a one- or a two-semester course Explores how ideas of analysis appear in a broader context Provides as major reorganization of the first edition Includes solutions at the end of the book
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena. Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.
Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets
Introduction to Analysis is an ideal text for a one semester course on analysis. The book covers standard material on the real numbers, sequences, continuity, differentiation, and series, and includes an introduction to proof. The author has endeavored to write this book entirely from the student's perspective: there is enough rigor to challenge even the best students in the class, but also enough explanation and detail to meet the needs of a struggling student. From the Author to the student: "I vividly recall sitting in an Analysis class and asking myself, 'What is all of this for?' or 'I don't have any idea what's going on.' This book is designed to help the student who finds themselves asking the same sorts of questions, but will also challenge the brightest students." Chapter 1 is a basic introduction to logic and proofs. Informal summaries of the idea of proof provided before each result, and before a solution to a practice problem. Every chapter begins with a short summary, followed by a brief abstract of each section. Each section ends with a concise and referenced summary of the material which is designed to give the student a "big picture" idea of each section. There is a brief and non-technical summary of the goals of a proof or solution for each of the results and practice problems in this book, which are clearly marked as "Idea of proof," or as "Methodology", followed by a clearly marked formal proof or solution. Many references to previous definitions and results. A "Troubleshooting Guide" appears at the end of each chapter that answers common questions.
A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do's and don'ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
Multi-Criteria Decision-Making (MCDM) includes methods and tools for modeling and solving complex problems. MCDM has become popular in the production and service sectors to improve the quality of service, reduce costs, and make people more prosperous. This book illustrates applications through case studies focused on disaster management. With a presentation of both Multi-Attribute Decision-Making (MADM) and Multi-Objective Decision-Making (MODM) models, this is the first book to merge these methods and tools with disaster management. This book raises awareness for society and decision-makers on how to measure readiness and what necessary preventive measures need to be taken. It offers models and case studies that can be easily adapted to solve complex problems and find solutions in other fields. Multi-Criteria Decision Analysis: Case Studies in Disaster Management will offer new insights to researchers working in the areas of industrial engineering, systems engineering, healthcare systems, operations research, mathematics, business, computer science, and disaster management, and, hopefully, the book will also stimulate further work in MCDM.
Exposes students to stimulating and enlightening proofs and hard problems of classical analysis mainly published in the Mathematical Association of America Monthly. Presents proofs as a form of exploration rather than just a manipulation of symbols. Draws on the papers from the MAA journals, numerous conceptually clear proofs are offered. Provides proofs either as a novel presentation of a familiar theorem or a lively discussion of a single issue, sometimes with multiple derivations. Collects and present problems to promote creative techniques for problem solving and undergraduate research and offers instructors an opportunity to assign these problems as projects. This book provides a wealth of opportunities for these projects. Selects problems for its natural charm - the connection with an authentic mathematical experience, the origination from the ingenious work of professionals, and ready developments into well-shaped results of broader interest.
The book offers a direct and up-to-date introduction to the theory of one-parameter semigroups of linear operators on Banach spaces. It contains the fundamental results of the theory such as the Hille-Yoshida generation theorem, the bounded perturbation theorem, and the Trotter-Kato approximation theorem. It also treats the spectral theory of semigroups and its consequences for the qualitative behavior. The book is intended for students and researchers who want to become acquainted with the concept of semigroups in order to work with it in fields like partial and functional differential equations. Exercises are provided at the end of the chapters.
This monographs presents new spherical mean value relations for classical boundary value problems of mathematical physics. The derived spherical mean value relations provide equivalent integral formulations of original boundary value problems. Direct and converse mean value theorems are proved for scalar elliptic equations (the Laplace, Helmholtz and diffusion equations), parabolic equations, high-order elliptic equations (biharmonic and metaharmonic equations), and systems of elliptic equations (the Lami equation, systems of diffusion and elasticity equations). In addition, applications to the random walk on spheres method are given.
This classic work has been a unique resource for thousands of mathematicians, scientists and engineers since its first appearance in 1902. Never out of print, its continuing value lies in its thorough and exhaustive treatment of special functions of mathematical physics and the analysis of differential equations from which they emerge. The book also is of historical value as it was the first book in English to introduce the then modern methods of complex analysis. This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate. All the formulas have been checked and many corrections made. A complete bibliographical search has been conducted to present the references in modern form for ease of use. A new foreword by Professor S.J. Patterson sketches the circumstances of the book's genesis and explains the reasons for its longevity. A welcome addition to any mathematician's bookshelf, this will allow a whole new generation to experience the beauty contained in this text.
This volume contains the proceedings of the NATO Advanced Research Workshop on Numerical Integration that took place in Bergen, Norway, in June 1991. It includes papers for all invited talks and a selection of contributed talks. The papers are organized into four parts: numerical integration rules, numerical integration error analysis, numerical integration applications and numerical integration algorithms and software; many papers are relevant to more than one category. The workshop studied the state of the art in numerical integration, both single and multidimensional. The book contains a number of survey papers by experts on themes such as numerical solution of integral equations, cubature formulae construction, handling singularities in finite elements, statistical applications, lattice rules, error estimates, error bounds and software.
The calculus of variations is one of the oldest subjects in mathematics, and it is very much alive and still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, several new exercises have been added. The book, containing a total of 119 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
This thesis is devoted to the systematic study of non-local theories that respect Lorentz invariance and are devoid of new, unphysical degrees of freedom. Such theories are attractive for phenomenological applications since they are mostly unconstrained by current experiments. Non-locality has played an increasingly important role in the physics of the last decades, appearing in effective actions in quantum field theory, and arising naturally in string theory and non-commutative geometry. It may even be a necessary ingredient for quantum theories of gravity. It is a feature of quantum entanglement, and may even solve the long-standing black hole information loss problem. "Non-locality" is a broad concept with many promising and fruitful applications in theoretical and mathematical physics. After a historical and pedagogical introduction into the concept of non-locality the author develops the notion of non-local Green functions to study various non-local weak-field problems in quantum mechanics, quantum field theory, gravity, and quantum field theory in curved spacetime. This thesis fills a gap in the literature by providing a self-contained exploration of weak-field effects in non-local theories, thereby establishing a "non-local intuition" which may serve as a stepping stone for studies of the full, non-linear problem of non-locality.
This book contains eleven refereed research papers on deformation quantization by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg in May 2001. Topics covered are: star-products over Poisson manifolds, quantization of Hopf algebras, index theorems, globalization and cohomological problems. Both the mathematical and the physical approach ranging from asymptotic quantum electrodynamics to operads and prop theory will be presented. Historical remarks and surveys set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research that has seen enourmous acticity in the last years, with new ties to many other areas of mathematics and physics.
The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter.
This book provides a modern introduction to harmonic analysis and synthesis on topological groups. It serves as a guide to the abstract theory of Fourier transformation. For the first time, it presents a detailed account of the theory of classical harmonic analysis together with the recent developments in spectral analysis and synthesis.
Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed proofs and bibliographies for further reading, the text: Examines Mann-type iterations for nonlinear mappings on some classes of a metric space Outlines recent research in fixed point theory in modular function spaces Discusses key results on the existence of continuous approximations and selections for set-valued maps with an emphasis on the nonconvex case Contains definitions, properties, and characterizations of convex, quasiconvex, and pseudoconvex functions, and of their strict counterparts Discusses variational inequalities and variational-like inequalities and their applications Gives an introduction to multi-objective optimization and optimality conditions Explores multi-objective combinatorial optimization (MOCO) problems, or integer programs with multiple objectives Fixed Point Theory, Variational Analysis, and Optimization is a beneficial resource for the research and study of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics. It provides fundamental knowledge of directional derivatives and monotonicity required in understanding and solving variational inequality problems.
It isn't that they can't see Approach your problems from the solution. the right end and begin with It is that they can't see the the answers. Then one day, perhaps you will find the problem. final question. G. K. Chesterton. The Scandal 'The Hermit Clad in Crane of Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze l1urders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis.
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincare, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
This book describes the solution of electrodynamic boundary problems, which arose in the practical life of a designer. Only a few problems can be solved analytically and some of these solutions are given in the book, for example, the computation of a strip line in a rectangular or circular cylinder capacitance. Practical lines' configurations require computational work. As the authors' practice shows, the use of Green functions, leading to singular integral equations, is a powerful and pretty universal method to solve different boundary problems, including electrodynamic ones. The book presents the results of computations of microstrip lines on magnetized (longitudinally and transversally) ferrite and semiconductor substrates taking into account all the geometric sizes. The properties of gyrotropic media are described in the book for the reader's convenience. The geometrical shape may be practically any. The integral equations are exact and give the proper field near the edges. Actually, the use of singular integral equations reduces the experimental verification to minimum. The book will be useful for students, engineers, designers and researchers. It contains a lot of computed results, which are verified experimentally and can be used immediately.
The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of the new results are presented in great detail.
This book offers an introduction to wavelet theory and provides the essence of wavelet analysis - including Fourier analysis and spectral analysis; the maximum overlap discrete wavelet transform; wavelet variance, covariance, and correlation - in a unified and friendly manner. It aims to bridge the gap between theory and practice by presenting substantial applications of wavelets in economics and finance.This book is the first to provide a comprehensive application of wavelet analysis to financial markets, covering new frontier issues in empirical finance and economics. The first chapter of this unique text starts with a description of the key features and applications of wavelets. After an overview of wavelet analysis, successive chapters rigorously examine the various economic and financial topics and issues that stimulate academic and professional research, including equity, interest swaps, hedges and futures, foreign exchanges, financial asset pricing, and mutual fund markets.This detail-oriented text is descriptive and designed purely for academic researchers and financial practitioners. It assumes no prior knowledge of econometrics and covers important topics such as portfolio asset allocation, asset pricing, hedging strategies, new risk measures, and mutual fund performance. Its accessible presentation is also suitable for post-graduates in a variety of disciplines - applied economics, financial engineering, international finance, financial econometrics, and fund management. To facilitate the subject of wavelets, sophisticated proofs and mathematics are avoided as much as possible when applying the wavelet multiscaling method. To enhance the reader's understanding in practical applications of the wavelet multiscaling method, this book provides sample programming instruction backed by Matlab wavelet code. |
You may like...
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
From Linear Operators to Computational…
Martin Davis, Edmond Schonberg
Hardcover
R2,661
Discovery Miles 26 610
|