![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy-type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new areas such as higher order and fractional order Hardy-type inequalities and integral inequalities on the cone of monotone functions, together with some applications and open problems.In this second edition, all chapters in the first edition have been updated with new information. Moreover, a new chapter contains new and complementary information concerning: (a) a convexity approach to prove and explain Hardy-type inequalities; (b) sharp constants; (c) scales of inequalities to characterize Hardy-type inequalities; (d) Hardy-type inequalities in other function spaces; and (e) a number of new open questions.
'It is a great book for a first year (US) graduate student. One of the nice features of the book is that the book contains full solutions for all of the problems which make it useful as reference for self-study or qualifying exam prep.' (See Full Review)MAA ReviewsIn this third volume of 'A Course in Analysis', two topics indispensible for every mathematician are treated: Measure and Integration Theory; and Complex Function Theory.In the first part measurable spaces and measure spaces are introduced and Caratheodory's extension theorem is proved. This is followed by the construction of the integral with respect to a measure, in particular with respect to the Lebesgue measure in the Euclidean space. The Radon-Nikodym theorem and the transformation theorem are discussed and much care is taken to handle convergence theorems with applications, as well as Lp-spaces.Integration on product spaces and Fubini's theorem is a further topic as is the discussion of the relation between the Lebesgue integral and the Riemann integral. In addition to these standard topics we deal with the Hausdorff measure, convolutions of functions and measures including the Friedrichs mollifier, absolutely continuous functions and functions of bounded variation. The fundamental theorem of calculus is revisited, and we also look at Sard's theorem or the Riesz-Kolmogorov theorem on pre-compact sets in Lp-spaces.The text can serve as a companion to lectures, but it can also be used for self-studying. This volume includes more than 275 problems solved completely in detail which should help the student further.
One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators. After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions. This work is one of the first to systematically take the operator approach to the theory of analytic functions.
In the first edition of his seminal introduction to wavelets, James S. Walker informed us that the potential applications for wavelets were virtually unlimited. Since that time thousands of published papers have proven him true, while also necessitating the creation of a new edition of his bestselling primer. Updated and fully revised to include the latest developments, this second edition of A Primer on Wavelets and Their Scientific Applications guides readers through the main ideas of wavelet analysis in order to develop a thorough appreciation of wavelet applications. Ingeniously relying on elementary algebra and just a smidgen of calculus, Professor Walker demonstrates how the underlying ideas behind wavelet analysis can be applied to solve significant problems in audio and image processing, as well in biology and medicine. Nearly twice as long as the original, this new edition provides 104 worked examples and 222 exercises, constituting a veritable book of review material Two sections on biorthogonal wavelets A mini-course on image compression, including a tutorial on arithmetic compression Extensive material on image denoising, featuring a rarely covered technique for removing isolated, randomly positioned clutter Concise yet complete coverage of the fundamentals of time-frequency analysis, showcasing its application to audio denoising, and musical theory and synthesis An introduction to the multiresolution principle, a new mathematical concept in musical theory Expanded suggestions for research projects An enhanced list of references
This book presents a comprehensive survey of the properties of a Banach space related to strict convexity. It is devoted to some of the basic results of linear functional analysis, and discusses the problem of the strict convexity of subspaces, products, and quotient subspaces.
This book contains papers on algebra, functional analysis, and general topology, with a strong interaction with set theoretic axioms and involvement with category theory, presented in the special session on Rings of Continuous Functions held in 1982 in Cincinnati, Ohio.
"Written by accomplished and well-known researchers in the field, this unique volume discusses important research topics on p-adic functional analysis and closely related areas, provides an authoritative overview of the main investigative fronts where developments are expected in the future, and more. "
Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per
Activation Spectrometry in Chemical Analysis Susan J. Parry In clear, easy-to-read language, Activation Spectrometry in Chemical Analysis provides a straightforward review of just what activation analysis can do, describing the technique as it is currently applied to biomedical, environmental, geological, and industrial analytical problems. The book outlines the specifics of the procedures that have proven critical to the technique’s success and describes the current status of activation spectrometry in a concise, three-part format: principles, techniques, and applications. Written for undergraduates and postgraduates in universities, research institutes, government, or industry, the book provides the first definitive look at the day-to-day and key uses of the method that is at once challenging and intriguing, yet simple to grasp. 1991 (0 471-63844-7) 264 pp. Principles and Practice of Spectroscopic Calibration Howard Mark Clearly linking theory with applications, this unique guide to spectroscopic calibration advances an approach that is understandable, free of the usual uncertainties, and simple to execute. The book details the practical aspects of generating a calibration equation, as well as the basics of recognizing and dealing with different types of problems affecting calibration. Most of the procedures are applicable to such sophisticated and popular approaches as Principal Component Calibration (PCA), Partial Least Squares Calibration (PLS), and Fourier Transform Calibration. 1991 (0 471-54614-3) 192 pp. Analytical Raman Spectroscopy Edited by Jeanette G. Grasselli and Bernard J. Bulkin Analytical Raman Spectroscopy charts, through a series of contributed articles, the spectacular versatility of the method and its applications in semiconductor characterization, synthetic organic polymer analysis, organic and petrochemical analysis, heterogeneous catalysts, and biological studies. Chapters feature an outline structure which systematically details the critical aspects of each subject discussed. The book provides a unique look at the field’s fundamental operational techniques, instrumentation, and up-to-the-minute advances: components of modern Raman spectrometers; Raman spectroscopy of inorganic species in solution; quantitative analysis by Raman spectroscopy; and much more. 1991 (0 471-51955-3) 480 pp.
Most books on linear operators are not easy to follow for students and researchers without an extensive background in mathematics. Self-contained and using only matrix theory, Invitation to Linear Operators: From Matricies to Bounded Linear Operators on a Hilbert Space explains in easy-to-follow steps a variety of interesting recent results on linear operators on a Hilbert space. The author first states the important properties of a Hilbert space, then sets out the fundamental properties of bounded linear operators on a Hilbert space. The final section presents some of the more recent developments in bounded linear operators.
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.
Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis.
A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do's and don'ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields. This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.
Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields. This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative k-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here. The book is based on a fifteen-week course which the author offered to first or second year graduate students with a foundation in measure theory and elementary functional analysis.
This second edition provides a broad range of methods and concepts required for the analysis and solution of equations which arise in the modeling of phenomena in the natural, engineering, and applied mathematical sciences. It may be used productively by both undergraduate and graduate students, as well as others who wish to learn, understand, and apply these techniques. Detailed discussions are also given for several topics that are not usually included in standard textbooks at this level of presentation: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations and several perturbation procedures. Further, this second edition includes several new topics covering functional equations, the Lambert-W function, nonstandard sets of periodic functions, and the method of dominant balance. Each chapter contains a large number of worked examples and provides references to the appropriate books and literature.
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hoelderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
In this monograph, we present the authors' recent work of the last seven years in Approximation Theory. Chapters are self-contained and can be read independently and advanced courses can be taught out of this book. Here our generalized discrete singular operators are of the following types: Picard, Gauss-Weierstrass and Poisson-Cauchy operators. We treat both the unitary and non-unitary, univariate and multivariate cases of these operators, which are not necessarily positive operators. The book's results are expected to find applications in many areas of pure and applied mathematics, and statistics. As such, it is suitable for researchers, graduate students, and seminars of related subjects, and serves well as an invaluable resource for all science libraries.
Exposes students to stimulating and enlightening proofs and hard problems of classical analysis mainly published in the Mathematical Association of America Monthly. Presents proofs as a form of exploration rather than just a manipulation of symbols. Draws on the papers from the MAA journals, numerous conceptually clear proofs are offered. Provides proofs either as a novel presentation of a familiar theorem or a lively discussion of a single issue, sometimes with multiple derivations. Collects and present problems to promote creative techniques for problem solving and undergraduate research and offers instructors an opportunity to assign these problems as projects. This book provides a wealth of opportunities for these projects. Selects problems for its natural charm - the connection with an authentic mathematical experience, the origination from the ingenious work of professionals, and ready developments into well-shaped results of broader interest.
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases. |
You may like...
High Dimensional Probability II
Evarist Gin e, David M. Mason, …
Hardcover
R4,101
Discovery Miles 41 010
Quantum Analogues: From Phase…
William Unruh, Ralf Schutzhold
Hardcover
R1,574
Discovery Miles 15 740
|