![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Model theory is one of the central branches of mathematical logic. The field has evolved rapidly in the last few decades. This book is an introduction to current trends in model theory, and contains a collection of articles authored by top researchers in the field. It is intended as a reference for students as well as senior researchers.
Numerical Methods for Fractional Calculus presents numerical methods for fractional integrals and fractional derivatives, finite difference methods for fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs), and finite element methods for FPDEs. The book introduces the basic definitions and properties of fractional integrals and derivatives before covering numerical methods for fractional integrals and derivatives. It then discusses finite difference methods for both FODEs and FPDEs, including the Euler and linear multistep methods. The final chapter shows how to solve FPDEs by using the finite element method. This book provides efficient and reliable numerical methods for solving fractional calculus problems. It offers a primer for readers to further develop cutting-edge research in numerical fractional calculus. MATLAB (R) functions are available on the book's CRC Press web page.
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
This classic work has been a unique resource for thousands of mathematicians, scientists and engineers since its first appearance in 1902. Never out of print, its continuing value lies in its thorough and exhaustive treatment of special functions of mathematical physics and the analysis of differential equations from which they emerge. The book also is of historical value as it was the first book in English to introduce the then modern methods of complex analysis. This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate. All the formulas have been checked and many corrections made. A complete bibliographical search has been conducted to present the references in modern form for ease of use. A new foreword by Professor S.J. Patterson sketches the circumstances of the book's genesis and explains the reasons for its longevity. A welcome addition to any mathematician's bookshelf, this will allow a whole new generation to experience the beauty contained in this text.
Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.
Dimensional analysis is a magical way of finding useful results with almost no effort. It makes it possible to bring together the results of experiments and computations in a concise but exact form, so that they can be used efficiently and economically to make predictions. It takes advantage of the fact that phenomena go their way independently of the units we measure them with, because the units have nothing to do with the underlying physics. This simple idea turns out to be unexpectedly powerful.Students often fail to gain from dimensional analysis, because bad teaching has led them to suppose it cannot be used to derive new results, and can only confirm results that have been secured by some other route. That notion is false. This book demonstrates what can be done with dimensional analysis through a series of examples, starting with Pythagoras' theorem and the simple pendulum, and going on to a number of practical examples, many from the author's experience in ocean engineering. In parallel, the book explains the underlying theory, starting with Vaschy's elegant treatment, whilst avoiding unnecessary complexity. It also explores the use and misuse of models, which can be useful but can also be seriously misleading.
Dimensional analysis is a magical way of finding useful results with almost no effort. It makes it possible to bring together the results of experiments and computations in a concise but exact form, so that they can be used efficiently and economically to make predictions. It takes advantage of the fact that phenomena go their way independently of the units we measure them with, because the units have nothing to do with the underlying physics. This simple idea turns out to be unexpectedly powerful.Students often fail to gain from dimensional analysis, because bad teaching has led them to suppose it cannot be used to derive new results, and can only confirm results that have been secured by some other route. That notion is false. This book demonstrates what can be done with dimensional analysis through a series of examples, starting with Pythagoras' theorem and the simple pendulum, and going on to a number of practical examples, many from the author's experience in ocean engineering. In parallel, the book explains the underlying theory, starting with Vaschy's elegant treatment, whilst avoiding unnecessary complexity. It also explores the use and misuse of models, which can be useful but can also be seriously misleading.
Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonne, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points - which are rarely treated in books at this level - and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.
In this book, we study theoretical and practical aspects of
computing methods for mathematical modelling of nonlinear systems.
A number of computing techniques are considered, such as methods of
operator approximation with any given accuracy; operator
interpolation techniques including a non-Lagrange interpolation;
methods of system representation subject to constraints associated
with concepts of causality, memory and stationarity; methods of
system representation with an accuracy that is the best within a
given class of models; methods of covariance matrix
estimation;
Over 90% of bacterial biomass exists in the form of biofilms. The ability of bacteria to attach to surfaces and to form biofilms often is an important competitive advantage for them over bacteria growing in suspension. Some biofilms are good in natural and engineered systems; they are responsible for nutrient cycling in nature and are used to purify waters in engineering processes. Other biofilms are bad when they cause fouling and infections of humans and plants. Whether we want to promote good biofilms or eliminate bad biofilms, we need to understand how they work and what works to control them. Mathematical models help us understand the complex phenomena that occur in biofilms. In recent years, biofilm modelling has rapidly advanced, resulting in a diversity of modeling approaches and tools. On the one hand, complex three-dimensional biofilm models can describe many aspects of the formation of heterogeneous biofilms. On the other hand, it is not always necessary to use such complex models. Simple models - ones that can be solved easily with a spreadsheet sometimes provide the information we need.Mathematical Modeling of Biofilms provides guidelines for the selection and use of mathematical models of biofilms. The whole range of existing models -- from simple analytical expressions to complex numerical models -- is covered. The application of the models for the solution of typical problems is demonstrated, and the performance of the models is tested in comparative studies. With the dramatic evolution of the computational capacity still going on, modeling tools for research and practice will become more and more significant in the next few years. This report provides the foundation to understand the models and to select the most appropriate one for a given use. The different types of biofilm models are described and compared for specific applications. For example, mathematical models often are used to quantify substrate conversion in biofilm reactors used for water treatment. A different application is for describing how heterogeneous biofilms develop in time and space. Mathematical Modeling of Biofilms gives a state-of-the-art overview that is especially valuable for educating students, new biofilm researchers, and design engineers.Through a series of three benchmark problems, the report demonstrates how to use the different models and indicates when simple or highly complex models are most appropriate.
The easy way to conquer calculus Calculus is hard--no doubt about it--and students often need help understanding or retaining the key concepts covered in class. Calculus Workbook For Dummies serves up the concept review and practice problems with an easy-to-follow, practical approach. Plus, you'll get free access to a quiz for every chapter online. With a wide variety of problems on everything covered in calculus class, you'll find multiple examples of limits, vectors, continuity, differentiation, integration, curve-sketching, conic sections, natural logarithms, and infinite series. Plus, you'll get hundreds of practice opportunities with detailed solutions that will help you master the math that is critical for scoring your highest in calculus. Review key concepts Take hundreds of practice problems Get access to free chapter quizzes online Use as a classroom supplement or with a tutor Get ready to quickly and easily increase your confidence and improve your skills in calculus.
The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available.
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and other disciplines. It features 200 new problems, 400 additional references, and a new chapter on the qualitative properties of solutions of neutral difference equations.
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
Fourier analysis is a mathematical technique for decomposing a signal into identifiable components. It is used in the study of all types of waves. This book explains the basic mathematical theory and some of the principal applications of Fourier analysis, in areas ranging from sound and vibration to optics and CAT scanning. The author provides in-depth coverage of the techniques and includes exercises that range from straightforward applications of formulas to more complex collections of problems. The text will be a valuable guide for courses in electrical engineering, applied mathematics, and signal processing.
As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable investigative scientific tools. Most of the techniques used for these analyses are well documented. However, a particularly useful method based on adjoint operators and applicable to a much wider variety of problems than methods traditionally used in control theory has lacked a full, systematic treatment.
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics. The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Historical foreword on the centenary after Felix Hausdorff's classic Set Theory Fundamentals of the theory of functions Fundamentals of the measure theory Historical notes on the Riesz - Radon - Frechet problem of characterization of Radon integrals as linear functionals
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
This book provides a comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well known and have been widely used in the last century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this book, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The book is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory.
Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, "how-to" reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.
For two-semester courses in Applied Calculus. Anticipating and meeting student needs Calculus and Its Applications remains a best-selling text because of its intuitive approach that anticipates student needs, and a writing style that pairs clear explanations with carefully crafted figures to help students visualize concepts. Key enhancements in the 2nd Edition include the earlier introduction of logarithmic and exponential functions to help students master these important functions and their applications. The text's accompanying MyLab (TM) Math course also has been revised substantially, as new co-author Gene Kramer (University of Cincinnati, Blue Ash) revisited every homework question and learning aid to improve content clarity and accuracy. These and all other aspects of the new edition are designed to motivate and help students more readily understand and apply principles of calculus. The title of this text was formerly Calculus and Its Applications, Expanded Version. Also available with MyLab Math MyLab (TM) Math is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab Math personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 013530802X / 9780135308028 Calculus and Its Applications plus MyLab Math with Pearson eText - Title-Specific Access Card Package Package consists of: 0135091683 / 9780135091685 Calculus and Its Applications 0135218233 / 9780135218235 MyLab Math with Pearson eText - Standalone Access Card - for Calculus and Its Applications
The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.
The volume is based on the Sobolev-Schwartz concept of Generalized Functions. It presents general theory including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner, Poisson integral transforms and operational calculus. Traditional material is supplemented by the theory of Fourier series, abelian theorems, boundary values of helomorphic functions for one and several variables. There is detailed study of convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions and multiplication of generalized functions and some trends in these problems. Methods of the theory of generalized functions are applied to some problems in mathematical physics, for example: fundamental solutions of partial differential equations and Cauchy problems. This volume also includes numerous problems, exercises, examples and figures.
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled 'The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,' reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,' discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincare, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal. |
![]() ![]() You may like...
Nonlinear Higher Order Differential And…
Feliz Manuel Minhos, Robert De Sousa
Hardcover
R2,611
Discovery Miles 26 110
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,572
Discovery Miles 25 720
|