![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Definition of vectors and discussion of algebraic operations on vectors leads to concept of tensor and algebraic operations on tensors. Also, systematic study of the differential and integral calculus of vector and tensor functions of space and time, more. Concise, eminently readable text. Worked out problems, solutions.
Basic Analysis IV: Measure Theory and Integration introduces students to concepts from measure theory and continues their training in the abstract way of looking at the world. This is a most important skill to have when your life's work will involve quantitative modeling to gain insight into the real world. This text generalizes the notion of integration to a very abstract setting in a variety of ways. We generalize the notion of the length of an interval to the measure of a set and learn how to construct the usual ideas from integration using measures. We discuss carefully the many notions of convergence that measure theory provides. Features * Can be used as a traditional textbook as well as for self-study * Suitable for advanced students in mathematics and associated disciplines * Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Basic Analysis II: A Modern Calculus in Many Variables focuses on differentiation in Rn and important concepts about mappings from Rn to Rm, such as the inverse and implicit function theorem and change of variable formulae for multidimensional integration. These topics converge nicely with many other important applied and theoretical areas which are no longer covered in mathematical science curricula. Although it follows on from the preceding volume, this is a self-contained book, accessible to undergraduates with a minimal grounding in analysis. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Basic Analysis III: Mappings on Infinite Dimensional Spaces is intended as a first course in abstract linear analysis. This textbook cover metric spaces, normed linear spaces and inner product spaces, along with many other deeper abstract ideas such a completeness, operators and dual spaces. These topics act as an important tool in the development of a mathematically trained scientist. Feature: Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasizes learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
This textbook offers a compact introductory course on Malliavin calculus, an active and powerful area of research. It covers recent applications, including density formulas, regularity of probability laws, central and non-central limit theorems for Gaussian functionals, convergence of densities and non-central limit theorems for the local time of Brownian motion. The book also includes a self-contained presentation of Brownian motion and stochastic calculus, as well as Levy processes and stochastic calculus for jump processes. Accessible to non-experts, the book can be used by graduate students and researchers to develop their mastery of the core techniques necessary for further study.
This textbook offers a compact introductory course on Malliavin calculus, an active and powerful area of research. It covers recent applications, including density formulas, regularity of probability laws, central and non-central limit theorems for Gaussian functionals, convergence of densities and non-central limit theorems for the local time of Brownian motion. The book also includes a self-contained presentation of Brownian motion and stochastic calculus, as well as Levy processes and stochastic calculus for jump processes. Accessible to non-experts, the book can be used by graduate students and researchers to develop their mastery of the core techniques necessary for further study.
This book is a concise yet complete calculus textbook covering all essential topics in multi-variable calculus, including geometry in three-dimensional space, partial derivatives, maximum/minimum, multiple integrals and vector calculus as well as a chapter for ODE. All the chapters are constructed in a logical way to outline the essence of each topic and to address potential difficulties arising from learning.
In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.
This tried-and-true text from Allyn Washington preserves the author's highly regarded approach to technical math, while enhancing the integration of technology. Appropriate for a two- to three- semester course, BASIC TECHNICAL MATHEMATICS WITH CALCULUS shows how algebra, trigonometry, and basic calculus are used on the job. It addresses a vast number of technical and pre-engineering fields, including computer design, electronics, solar energy, lasers fiber optics, and the environment. Known for its exceptional problem sets and applied material, the book offers practice exercises, writing exercises, word problems, and practice tests. This edition features more technical applications, over 2300 new exercises, and additional graphing calculator screens.
In today's industrial and complex world, the progress of change is incredible. The amount of information which needs to be analyzed is very large and time has become more and more limited. Industries and firms of all sizes desire to increase productivity and sustainability to keep their competitive edge in the marketplace. One of the best tools for achieving this is the application of Quality Engineering Techniques (QET). This book will introduce the integrated model and the numerical applications for implementing it.
The book is written mainly to advanced graduate and post-graduate students following courses in Perturbation Theory and Celestial Mechanics. It is also intended to serve as a guide in research work and is written in a very explicit way: all perturbation theories are given with details allowing its immediate application to real problems. In addition, they are followed by examples showing all steps of their application. The book is not intended to explore the mathematics of Hamiltonian Systems, but may be useful to mathematicians in a great deal of circumstances as a reference on the practical application of the theories. In the same way, it may be a source book on the problems of degeneracy and small divisors, which affect the use of perturbation theories as well in Celestial Mechanics as in Physics.
Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.
The fastest, easiest way to master precalculus . . . by doing it! Do logarithmic functions throw you for a loop? Does the challenge of finding an inverse function leave you overwhelmed? Does the Law of Cosines make you feel clueless? With this helpful, easy-to-follow guide, you will gain total command of these precalc concepts–and many more–in no time at all. Precalculus: A Self-Teaching Guide includes an algebra review and complete coverage of exponential functions, log functions, and trigonometry. Whether you are studying precalculus for the first time, want to refresh your memory, or need a little help for a course, this clear, interactive primer will provide you with the skills you need. Precalculus offers a proven self-teaching approach that lets you work at your own pace–and the frequent self-tests and exercises reinforce what you’ve learned. Turn to this one-of-a-kind teaching tool and, before you know it, you’ll be solving problems like a mathematician!
NMR DATA PROCESSING Jeffrey C. Hoch and Alan S. Stern Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful nondestructive technique for exploring the structure of matter. In recent years, NMR instrumentation has become increasingly sophisticated, and the software used to acquire and process NMR data continues to expand in scope and complexity. This software has always been difficult to understand, and, until now, it seemed likely to remain that way. NMR Data Processing examines and explains the techniques used to process, present, and analyze NMR data. It provides a complete account of the fundamentals of spectrum analysis and establishes a framework for applying those fundamentals to real NMR data. It also details, in clear and concise language, the basic principles underlying the complex software needed to analyze the data. Two chapters are devoted to the fundamentals and applications of discrete Fourier transform (DFT) in NMR, which was crucial to the development of modern NMR spectroscopy. A large part of the book focuses on increasingly important non-DFT methods, which obtain higher sensitivity and resolution. Other topics covered include:
Jeffrey C. Hoch and Alan S. Stern conclude their in-depth look at this rapidly growing field by exploring methods for analyzing processed data, including visualization, quantification, and error analysis. Readers are provided with a solid foundation for developing new methods of their own. NMR Data Processing is an important tool for students learning basic principles for the first time, technicians troubleshooting data processing problems, and professional researchers developing new techniques. It will help all NMR users acquire a true grasp of the methods behind the process, avoid the pitfalls of misapplication and misinterpretation, and exploit the full power of NMR software.
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.
A computer algebra system such as Mathematica (R) is able to do much more than just numerics: This text shows how to tackle real mathematical problems from basic analysis. The reader learns how Mathematica (R) represents domains, qualifiers and limits to implement actual proofs - a requirement to unlock the huge potential of Mathematica (R) for a variety of applications.
This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.
A large part of mathematical analysis, both pure and applied, takes place on Polish spaces: topological spaces whose topology can be given by a complete metric. This analysis is not only simpler than in the general case, but, more crucially, contains many important special results. This book provides a detailed account of analysis and measure theory on Polish spaces, including results about spaces of probability measures. Containing more than 200 elementary exercises, it will be a useful resource for advanced mathematical students and also for researchers in mathematical analysis. The book also includes a straightforward and gentle introduction to the theory of optimal transportation, illustrating just how many of the results established earlier in the book play an essential role in the theory.
While differentiating elementary functions is merely a skill, finding their integrals is an art. This practical introduction to the art of integration gives readers the tools and confidence to tackle common and uncommon integrals. After a review of the basic properties of the Riemann integral, each chapter is devoted to a particular technique of elementary integration. Thorough explanations and plentiful worked examples prepare the reader for the extensive exercises at the end of each chapter. These exercises increase in difficulty from warm-up problems, through drill examples, to challenging extensions which illustrate such advanced topics as the irrationality of and e, the solution of the Basel problem, Leibniz's series and Wallis's product. The author's accessible and engaging manner will appeal to a wide audience, including students, teachers and self-learners. The book can serve as a complete introduction to finding elementary integrals, or as a supplementary text for any beginning course in calculus.
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Practice your way to a higher grade in Calculus! Calculus is a hands-on skill. You've gotta use it or lose it. And the best way to get the practice you need to develop your mathematical talents is Calculus: 1001 Practice Problems For Dummies. The perfect companion to Calculus For Dummies--and your class-- this book offers readers challenging practice problems with step-by-step and detailed answer explanations and narrative walkthroughs. You'll get free access to all 1,001 practice problems online so you can create your own study sets for extra-focused learning. Readers will also find: A useful course supplement and resource for students in high school and college taking Calculus I Free, one-year access to all practice problems online, for on-the-go study and practice An excellent preparatory resource for faster-paced college classes Calculus: 1001 Practice Problems For Dummies (+ Free Online Practice) is an essential resource for high school and college students looking for more practice and extra help with this challenging math subject. Calculus: 1001 Practice Problems For Dummies (9781119883654) was previously published as 1,001 Calculus Practice Problems For Dummies (9781118496718). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product.
This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hoermander's propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.
The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs. |
You may like...
Web Portal Design, Implementation…
Jana Polgar, Greg Adamson
Hardcover
R4,798
Discovery Miles 47 980
News Search, Blogs and Feeds - A Toolkit
Lars Vage, Lars Iselid
Paperback
R1,332
Discovery Miles 13 320
Web Services - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R8,957
Discovery Miles 89 570
|