![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book presents functional analysis over arbitrary valued fields and investigates normed spaces and algebras over fields with valuation, with attention given to the case when the norm and the valuation are nonarchimedean. It considers vector spaces over fields with nonarchimedean valuation.
The Banach-Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.
Bessel functions have the peculiarity of being functions of two independent variables: argument and order. They have been studied extensively because of their countless applications, but the vast majority of available literature is devoted to the case of fixed order, variable argument. This two-volume work explores the opposite case. This volume collects tabulations of the first, second, and third derivatives with respect to the order.
This book presents an introduction to singular-perturbation problems, problems which depend on a parameter in such a way that solutions behave non-uniformly as the parameter tends toward some limiting value of interest. The author considers and solves a variety of problems, mostly for ordinary differential equations. He constructs (approximate) solutions for oscillation problems, using the methods of averaging and of multiple scales. For problems of the nonoscillatory type, where solutions exhibit 'fast dynamics' in a thin initial layer, he derives solutions using the O'Malley/Hoppensteadt method and the method of matched expansions. He obtains solutions for boundary-value problems, where solutions exhibit rapid variation in thin layers, using a multivariable method. After a suitable approximate solution is constructed, the author linearizes the problem about the proposed approximate solution, and, emphasizing the use of the Banach/Picard fixed-point theorem, presents a study of the linearization. This book will be useful to students at the graduate and senior undergraduate levels studying perturbation theory for differential equations, and to pure and applied mathematicians, engineers, and scientists who use differential equations in the modelling of natural phenomena.
These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on "Stochastics of Environmental and Financial Economics (SEFE)", being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.
Iterative Methods for Fixed Points of Nonlinear Operators offers an introduction into iterative methods of fixed points for nonexpansive mappings, pseudo-contrations in Hilbert Spaces and in Banach Spaces. Iterative methods of zeros for accretive mappings in Banach Spaces and monotone mappings in Hilbert Spaces are also discussed. It is an essential work for mathematicians and graduate students in nonlinear analysis.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Bessel functions have the peculiarity of being functions of two independent variables: argument and order. They have been studied extensively because of their countless applications, but the vast majority of available literature is devoted to the case of fixed order, variable argument. This two-volume work explores the opposite case. This volume focuses on properties of the functions and mathematical operations with respect to the order.
Basic Analysis IV: Measure Theory and Integration introduces students to concepts from measure theory and continues their training in the abstract way of looking at the world. This is a most important skill to have when your life's work will involve quantitative modeling to gain insight into the real world. This text generalizes the notion of integration to a very abstract setting in a variety of ways. We generalize the notion of the length of an interval to the measure of a set and learn how to construct the usual ideas from integration using measures. We discuss carefully the many notions of convergence that measure theory provides. Features * Can be used as a traditional textbook as well as for self-study * Suitable for advanced students in mathematics and associated disciplines * Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Basic Analysis II: A Modern Calculus in Many Variables focuses on differentiation in Rn and important concepts about mappings from Rn to Rm, such as the inverse and implicit function theorem and change of variable formulae for multidimensional integration. These topics converge nicely with many other important applied and theoretical areas which are no longer covered in mathematical science curricula. Although it follows on from the preceding volume, this is a self-contained book, accessible to undergraduates with a minimal grounding in analysis. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Basic Analysis III: Mappings on Infinite Dimensional Spaces is intended as a first course in abstract linear analysis. This textbook cover metric spaces, normed linear spaces and inner product spaces, along with many other deeper abstract ideas such a completeness, operators and dual spaces. These topics act as an important tool in the development of a mathematically trained scientist. Feature: Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasizes learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
This textbook offers a compact introductory course on Malliavin calculus, an active and powerful area of research. It covers recent applications, including density formulas, regularity of probability laws, central and non-central limit theorems for Gaussian functionals, convergence of densities and non-central limit theorems for the local time of Brownian motion. The book also includes a self-contained presentation of Brownian motion and stochastic calculus, as well as Levy processes and stochastic calculus for jump processes. Accessible to non-experts, the book can be used by graduate students and researchers to develop their mastery of the core techniques necessary for further study.
This textbook offers a compact introductory course on Malliavin calculus, an active and powerful area of research. It covers recent applications, including density formulas, regularity of probability laws, central and non-central limit theorems for Gaussian functionals, convergence of densities and non-central limit theorems for the local time of Brownian motion. The book also includes a self-contained presentation of Brownian motion and stochastic calculus, as well as Levy processes and stochastic calculus for jump processes. Accessible to non-experts, the book can be used by graduate students and researchers to develop their mastery of the core techniques necessary for further study.
This book is a concise yet complete calculus textbook covering all essential topics in multi-variable calculus, including geometry in three-dimensional space, partial derivatives, maximum/minimum, multiple integrals and vector calculus as well as a chapter for ODE. All the chapters are constructed in a logical way to outline the essence of each topic and to address potential difficulties arising from learning.
In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.
This tried-and-true text from Allyn Washington preserves the author's highly regarded approach to technical math, while enhancing the integration of technology. Appropriate for a two- to three- semester course, BASIC TECHNICAL MATHEMATICS WITH CALCULUS shows how algebra, trigonometry, and basic calculus are used on the job. It addresses a vast number of technical and pre-engineering fields, including computer design, electronics, solar energy, lasers fiber optics, and the environment. Known for its exceptional problem sets and applied material, the book offers practice exercises, writing exercises, word problems, and practice tests. This edition features more technical applications, over 2300 new exercises, and additional graphing calculator screens.
In today's industrial and complex world, the progress of change is incredible. The amount of information which needs to be analyzed is very large and time has become more and more limited. Industries and firms of all sizes desire to increase productivity and sustainability to keep their competitive edge in the marketplace. One of the best tools for achieving this is the application of Quality Engineering Techniques (QET). This book will introduce the integrated model and the numerical applications for implementing it.
The book is written mainly to advanced graduate and post-graduate students following courses in Perturbation Theory and Celestial Mechanics. It is also intended to serve as a guide in research work and is written in a very explicit way: all perturbation theories are given with details allowing its immediate application to real problems. In addition, they are followed by examples showing all steps of their application. The book is not intended to explore the mathematics of Hamiltonian Systems, but may be useful to mathematicians in a great deal of circumstances as a reference on the practical application of the theories. In the same way, it may be a source book on the problems of degeneracy and small divisors, which affect the use of perturbation theories as well in Celestial Mechanics as in Physics.
Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.
NMR DATA PROCESSING Jeffrey C. Hoch and Alan S. Stern Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful nondestructive technique for exploring the structure of matter. In recent years, NMR instrumentation has become increasingly sophisticated, and the software used to acquire and process NMR data continues to expand in scope and complexity. This software has always been difficult to understand, and, until now, it seemed likely to remain that way. NMR Data Processing examines and explains the techniques used to process, present, and analyze NMR data. It provides a complete account of the fundamentals of spectrum analysis and establishes a framework for applying those fundamentals to real NMR data. It also details, in clear and concise language, the basic principles underlying the complex software needed to analyze the data. Two chapters are devoted to the fundamentals and applications of discrete Fourier transform (DFT) in NMR, which was crucial to the development of modern NMR spectroscopy. A large part of the book focuses on increasingly important non-DFT methods, which obtain higher sensitivity and resolution. Other topics covered include:
Jeffrey C. Hoch and Alan S. Stern conclude their in-depth look at this rapidly growing field by exploring methods for analyzing processed data, including visualization, quantification, and error analysis. Readers are provided with a solid foundation for developing new methods of their own. NMR Data Processing is an important tool for students learning basic principles for the first time, technicians troubleshooting data processing problems, and professional researchers developing new techniques. It will help all NMR users acquire a true grasp of the methods behind the process, avoid the pitfalls of misapplication and misinterpretation, and exploit the full power of NMR software.
Digital forensics has recently gained a notable development and become the most demanding area in today's information security requirement. This book investigates the areas of digital forensics, digital investigation and data analysis procedures as they apply to computer fraud and cybercrime, with the main objective of describing a variety of digital crimes and retrieving potential digital evidence. Big Data Analytics and Computing for Digital Forensic Investigations gives a contemporary view on the problems of information security. It presents the idea that protective mechanisms and software must be integrated along with forensic capabilities into existing forensic software using big data computing tools and techniques. Features Describes trends of digital forensics served for big data and the challenges of evidence acquisition Enables digital forensic investigators and law enforcement agencies to enhance their digital investigation capabilities with the application of data science analytics, algorithms and fusion technique This book is focused on helping professionals as well as researchers to get ready with next-generation security systems to mount the rising challenges of computer fraud and cybercrimes as well as with digital forensic investigations. Dr Suneeta Satpathy has more than ten years of teaching experience in different subjects of the Computer Science and Engineering discipline. She is currently working as an associate professor in the Department of Computer Science and Engineering, College of Bhubaneswar, affiliated with Biju Patnaik University and Technology, Odisha. Her research interests include computer forensics, cybersecurity, data fusion, data mining, big data analysis and decision mining. Dr Sachi Nandan Mohanty is an associate professor in the Department of Computer Science and Engineering at ICFAI Tech, ICFAI Foundation for Higher Education, Hyderabad, India. His research interests include data mining, big data analysis, cognitive science, fuzzy decision-making, brain-computer interface, cognition and computational intelligence.
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.
A computer algebra system such as Mathematica (R) is able to do much more than just numerics: This text shows how to tackle real mathematical problems from basic analysis. The reader learns how Mathematica (R) represents domains, qualifiers and limits to implement actual proofs - a requirement to unlock the huge potential of Mathematica (R) for a variety of applications. |
You may like...
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
The Official Downton Abbey Afternoon Tea…
Gareth Neame
Hardcover
(1)
Control of Discrete-Time Descriptor…
Alexey A. Belov, Olga G. Andrianova, …
Hardcover
R3,774
Discovery Miles 37 740
|