![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Mathematics majors at Michigan State University take a "Capstone" course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basic wavelet theory is a natural topic for such a course. By name, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity.
Christian Heinemann explores a unifying model which couples phase separation and damage processes in a system of partial differential equations. The model has technological applications to solder materials where interactions of both phenomena have been observed and cannot be neglected for a realistic description. The author derives the equations in a thermodynamically consistent framework and presents suitable weak formulations for various types of this coupled system. In the main part, he proves the existence of weak solutions and investigates degenerate limits.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
Nonlinear complex open systems show great diversity in the process of self-organization, and that diversity increases as complexity increases. The measurement of complexity and the origins of the diversity of such complex systems are the focus of interdisciplinary studies extending across a wide range of scientific disciplines that include applied mathematics, physics, chemistry, biology, psychology, ecology, sociology, and economics. Previous investigations have concentrated either on complexity or on diversity, but not both. This volume makes clear the relation between complexity and diversity with examples drawn from various disciplines. Compiles here are presentations from the Complexity and Diversity workshop held in Fugue, Japan, in August 1996. The contributions are the results of research in mathematical systems, physical systems, living systems, and social systems, and are contained in the four corresponding sections of the book. Mathematical expressions for the theory of complexity as a fundamental method along with realistic examples for application of systematic methods provide the reader with ready access to the latest topics in complex systems.
'Et moi, ..., si j'avait Sll comment en revemr, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Stochastic differential equations whose solutions are diffusion (or other random) processes have been the subject of lively mathematical research since the pioneering work of Gihman, Ito and others in the early fifties. As it gradually became clear that a great number of real phenomena in control theory, physics, biology, economics and other areas could be modelled by differential equations with stochastic perturbation terms, this research became somewhat feverish, with the results that a) the number of theroretical papers alone now numbers several hundred and b) workers interested in the field (especially from an applied viewpoint) have had no opportunity to consult a systematic account. This monograph, written by two of the world's authorities on prob ability theory and stochastic processes, fills this hiatus by offering the first extensive account of the calculus of random differential equations de fined in terms of the Wiener process. In addition to systematically ab stracting most of the salient results obtained thus far in the theory, it includes much new material on asymptotic and stability properties along with a potentially important generalization to equations defined with the aid of the so-called random Poisson measure whose solutions possess jump discontinuities. Although this monograph treats one of the most modern branches of applied mathematics, it can be read with profit by anyone with a knowledge of elementary differential equations armed with a solid course in stochastic processes from the measure-theoretic point of view."
This book project was initiated at "The Tribute Workshop in Honour of Gunnar Sparr" and the follow-up workshop "Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08," held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's
sixty-fifth anniversary and more than forty years of exceptional
service to mathematics and its applications in engineering and
technology, mathematics and engineering education, as well as
interdisciplinary, industrial and international cooperation.
In this book we introduce the class of mappings of finite distortion as a generalization of the class of mappings of bounded distortion. Connections with models of nonlinear elasticity are also discussed. We study continuity properties, behavior of our mappings on null sets, topological properties like openness and discreteness, regularity of the potential inverse mappings and many other aspects.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific dis ciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathe matics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface A successful concurrent numerical simulation requires physics and math ematics to develop and analyze the model, numerical analysis to develop solution methods, and computer science to develop a concurrent implemen tation. No single course can or should cover all these disciplines. Instead, this course on concurrent scientific computing focuses on a topic that is not covered or is insufficiently covered by other disciplines: the algorith mic structure of numerical methods.
This book introduces two most important aspects of modern analysis: the theory of measure and integration and the theory of Banach and Hilbert spaces. It is designed to serve as a text for first-year graduate students who are already familiar with some analysis as given in a book similar to Apostol's Mathematical Analysis. t This book treats in sufficient detail most relevant topics in the area of real and functional analysis that can be included in a book of this nature and size and at the level indicated above. It can serve as a text for a solid one-year course entitled "Measure and Integration Theory" or a com prehensive one-year course entitled "Banach Spaces, Hilbert Spaces, and Spectral Theory. " For the latter alternative, the student is, of course, required to have some knowledge of measure and integration theory. The breadth of the book gives the instructor enough flexibility to choose what is best suited for his/her class. Specifically the following alternatives are available: (a) A one-year course on "Measure and Integration" utilizing Chapters 1 (Sections l. l-1. 3 and 1. 6), 2, 3, 4, portions of 5 (information on Lp spaces), and portions of 7 (left to the discretion of the teacher). (b) A one-year course in "Functional Analysis" utilizing Chapters 1 (Sections 1. 4-1. 6), 5, 6, 7 (Sections 7. 4 and 7. 6), and the Ap pendix. t T. M. Apostol, Mathematical Analysis, 2nd ed., Addison-Wesley (1974)."
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems."
As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.
Two-fluid dynamics is a challenging subject rich in physics and prac tical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actu ally work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This proce dure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet.
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics. "
Blank and Krantz's Calculus 2e brings together time-tested methods and innovative thinking to address the needs of today's students, who come from a wide range of backgrounds and look ahead to a variety of futures. Using meaningful examples, credible applications, and incisive technology, Blank and Krantz's Calculus 2e strives to empower students, enhance their critical thinking skills, and equip them with the knowledge and skills to succeed in the major or discipline they ultimately choose to study. Blank and Krantz's engaging style and clear writing make the language of mathematics accessible, understandable and enjoyable, while maintaining high standards for mathematical rigor. Using meaningful examples, credible applications, and incisive technology, Blank and Krantz's Calculus 2e strives to empower students, enhance their critical thinking skills, and equip them with the knowledge and skills to succeed in the major or discipline they ultimately choose to study. Blank and Krantz's engaging style and clear writing make the language of mathematics accessible, understandable and enjoyable, while maintaining high standards for mathematical rigor. Blank and Krantz's Calculus 2e is available with WileyPLUS, an online teaching and learning environment initially developed for Calculus and Differential Equations courses. WileyPLUS integrates the complete digital textbook with powerful student and instructor resources as well as online auto-graded homework.
This book provides an introduction to the theory of turbulence in fluids based on the representation of the flow by means of its vorticity field. It has long been understood that, at least in the case of incompressible flow, the vorticity representation is natural and physically transparent, yet the development of a theory of turbulence in this representation has been slow. The pioneering work of Onsager and of Joyce and Montgomery on the statistical mechanics of two-dimensional vortex systems has only recently been put on a firm mathematical footing, and the three-dimensional theory remains in parts speculative and even controversial. The first three chapters of the book contain a reasonably standard intro duction to homogeneous turbulence (the simplest case); a quick review of fluid mechanics is followed by a summary of the appropriate Fourier theory (more detailed than is customary in fluid mechanics) and by a summary of Kolmogorov's theory of the inertial range, slanted so as to dovetail with later vortex-based arguments. The possibility that the inertial spectrum is an equilibrium spectrum is raised."
From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #"Book Review - " "Engineering Societies Library, New York"#1 "An attempt to make research tools concerning strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #"American Mathematical Monthly"#2
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions."
The theory presented in this book is developed constructively, is based on a few axioms encapsulating the notion of objects (points and sets) being apart, and encompasses both point-set topology and the theory of uniform spaces. While the classical-logic-based theory of proximity spaces provides some guidance for the theory of apartness, the notion of nearness/proximity does not embody enough algorithmic information for a deep constructive development. The use of constructive (intuitionistic) logic in this book requires much more technical ingenuity than one finds in classical proximity theory -- algorithmic information does not come cheaply -- but it often reveals distinctions that are rendered invisible by classical logic. In the first chapter the authors outline informal constructive logic and set theory, and, briefly, the basic notions and notations for metric and topological spaces. In the second they introduce axioms for a point-set apartness and then explore some of the consequences of those axioms. In particular, they examine a natural topology associated with an apartness space, and relations between various types of continuity of mappings. In the third chapter the authors extend the notion of point-set (pre-)apartness axiomatically to one of (pre-)apartness between subsets of an inhabited set. They then provide axioms for a quasiuniform space, perhaps the most important type of set-set apartness space. Quasiuniform spaces play a major role in the remainder of the chapter, which covers such topics as the connection between uniform and strong continuity (arguably the most technically difficult part of the book), apartness and convergence in function spaces, types of completeness, and neat compactness. Each chapter has a Notes section, in which are found comments on the definitions, results, and proofs, as well as occasional pointers to future work. The book ends with a Postlude that refers to other constructive approaches to topology, with emphasis on the relation between apartness spaces and formal topology. Largely an exposition of the authors' own research, this is the first book dealing with the apartness approach to constructive topology, and is a valuable addition to the literature on constructive mathematics and on topology in computer science. It is aimed at graduate students and advanced researchers in theoretical computer science, mathematics, and logic who are interested in constructive/algorithmic aspects of topology.
Of the many different approaches to solving partial differential
equations numerically, this book studies difference methods.
Written for the beginning graduate student in applied mathematics
and engineering, this text offers a means of coming out of a course
with a large number of methods that provide both theoretical
knowledge and numerical experience. The reader will learn that
numerical experimentation is a part of the subject of numerical
solution of partial differential equations, and will be shown some
uses and taught some techniques of numerical experimentation. |
![]() ![]() You may like...
Advanced Pulse-Width-Modulation: With…
Dong JIANG, Zewei Shen, …
Hardcover
R2,370
Discovery Miles 23 700
Practices in Power System Management in…
J Raja, P Ajay-D-Vimal Raj, …
Hardcover
R3,373
Discovery Miles 33 730
Advances in VLSI, Communication, and…
Debashis Dutta, Haranath Kar, …
Hardcover
R5,828
Discovery Miles 58 280
CMOS Receiver Front-ends for Gigabit…
Francisco Aznar, Santiago Celma Pueyo, …
Hardcover
R2,880
Discovery Miles 28 800
Introduction to Microlithography
Larry F. Thompson, C. Grant Willson, …
Hardcover
R5,071
Discovery Miles 50 710
Load-Pull Techniques with Applications…
Fadhel M. Ghannouchi, Mohammad S. Hashmi
Hardcover
R4,365
Discovery Miles 43 650
|